Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Respir Crit Care Med ; 200(2): 184-198, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30964696

ABSTRACT

Rationale: Given the paucity of effective treatments for idiopathic pulmonary fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. TGF-ß (transforming growth factor-ß) is the main profibrotic factor, but its inhibition is associated with severe side effects because of its pleiotropic role. Objectives: To determine if downstream noncoding effectors of TGF-ß in fibroblasts may represent new effective therapeutic targets whose modulation may be well tolerated. Methods: We investigated the whole noncoding fraction of TGF-ß-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblasts. Differential expression of the long noncoding RNA (lncRNA) DNM3OS (dynamin 3 opposite strand) and its associated microRNAs (miRNAs) was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. Measurements and Main Results: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-ß-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e., miR-199a-5p/3p and miR-214-3p), which influence SMAD and non-SMAD components of TGF-ß signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. Conclusions: Pharmacological approaches aiming at interfering with the lncRNA DNM3OS may represent new effective therapeutic strategies in IPF.


Subject(s)
Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/genetics , RNA, Long Noncoding/genetics , Transforming Growth Factor beta/metabolism , Animals , Caveolin 1/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Mice , MicroRNAs/metabolism , Myofibroblasts/metabolism , Signal Transduction , Smad Proteins/metabolism , Wnt Signaling Pathway
2.
PLoS Genet ; 9(2): e1003291, 2013.
Article in English | MEDLINE | ID: mdl-23459460

ABSTRACT

As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFß exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFß signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases.


Subject(s)
Caveolin 1 , Idiopathic Pulmonary Fibrosis , Lung , MicroRNAs , Transforming Growth Factor beta , Animals , Bleomycin/toxicity , Caveolin 1/genetics , Caveolin 1/metabolism , Cell Differentiation , Cell Movement , Cell Proliferation , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/physiopathology , Lung/metabolism , Lung/pathology , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Invasiveness , Transforming Growth Factor beta/administration & dosage , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Up-Regulation
3.
Drug Metab Dispos ; 40(10): 1953-65, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22798553

ABSTRACT

Numerous lung cell lines are currently used as in vitro models for pharmacological and toxicological studies. However, no exhaustive report about the metabolic capacities of these models in comparison with those of lung tissues is available. In the present study, we used a high-throughput quantitative real-time reverse transcription-polymerase chain reaction strategy to characterize the expression profiles of 380 genes encoding proteins involved in the metabolism and disposition of xenobiotics in 10 commonly used lung cell lines (A549, H292, H358, H460, H727, Calu-1, 16HBE, 1 HAEO, BEAS-2B, and L-132) and four primary cultures of human bronchial epithelial cells. Expression results were then compared with those previously obtained in human nontumoral and tumoral lung tissues. Our results revealed disparities in gene expression between lung cell lines or when comparing lung cell lines with primary cells or lung tissues. Primary cell cultures displayed the highest similarities with bronchial mucosa in terms of transcript profiling and therefore seem to be the most relevant in vitro model for investigating the metabolism and bioactivation of toxicants and drugs in bronchial epithelium. H292 and BEAS-2B cell lines, which exhibited the highest homology in gene expression pattern with primary cells and the lowest number of dysregulated genes compared with nontumoral lung tissues, could be used as surrogates for toxicological and pharmacological studies. Overall, our study should provide references for researchers to choose the most appropriate in vitro model for analyzing the cellular effects of drugs or airborne toxicants on the airway.


Subject(s)
Lung Neoplasms/metabolism , Lung/metabolism , Xenobiotics/metabolism , Biotransformation/genetics , Bronchi/metabolism , Cell Line , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , High-Throughput Screening Assays , Humans , Lung/enzymology , Lung/pathology , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Primary Cell Culture , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Respiratory Mucosa/metabolism , Reverse Transcriptase Polymerase Chain Reaction
4.
ACS Appl Mater Interfaces ; 7(23): 12882-93, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25992843

ABSTRACT

In the field of implantable titanium-based biomaterials, infections and inflammations are the most common forms of postoperative complications. The controlled local delivery of therapeutics from implants through polyelectrolyte multilayers (PEMs) has recently emerged as a versatile technique that has shown great promise in the transformation of a classical medical implant into a drug delivery system. Herein, we report the design and the elaboration of new biodegradable multidrug-eluting titanium platforms based on a polyelectrolyte multilayer bioactive coating that target infections. These systems were built up in mild conditions according to the layer-by-layer (L-b-L) assembly and incorporate two biocompatible polysaccharides held together through electrostatic interactions. A synthetic, negatively charged ß-cyclodextrin-based polymer (PCD), well-known for forming stable and reversible complexes with hydrophobic therapeutic agents, was exploited as a multidrug reservoir, and chitosan (CHT), a naturally occurring, positively charged polyelectrolyte, was used as a barrier for controlling the drug delivery rate. These polyelectrolyte multilayer films were strongly attached to the titanium surface through a bioinspired polydopamine (PDA) film acting as an adhesive first layer and promoting the robust anchorage of PEMs onto the biomaterials. Prior to the multilayer film deposition, the interactions between both oppositely charged polyelectrolytes, as well the multilayer growth, were monitored by employing surface plasmon resonance (SPR). Several PEMs integrating 5, 10, and 15 bilayers were engineered using the dip coating strategy, and the polyelectrolyte surface densities were estimated by colorimetric titrations and gravimetric analyses. The morphologies of these multilayer systems, as well as their naturally occurring degradation in a physiological medium, were investigated by scanning electron microscopy (SEM), and their thicknesses were measured by means of profilometry and ellipsometry studies. Finally, the ability of the coated titanium multilayer devices to act as a drug-eluting system and to treat infections was validated with gentamicin, a relevant water-soluble antibiotic commonly used in medicine due to its broad bactericidal spectrum.


Subject(s)
Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Coated Materials, Biocompatible/chemistry , Drug Carriers/chemistry , Titanium/chemistry , beta-Cyclodextrins/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Gentamicins/chemistry , Gentamicins/pharmacokinetics , Gentamicins/pharmacology , Indoles , Microbial Viability/drug effects , Polymers , Staphylococcus aureus/drug effects , Surface Plasmon Resonance
5.
ACS Appl Mater Interfaces ; 6(5): 3575-86, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24533838

ABSTRACT

During the past decade, drug-eluting stents (DES) have been widely used for the treatment of occlusive coronary artery diseases. They are supposed to reduce the incidence of early in-stent restenosis by the elution of highly hydrophobic antiproliferative drugs. Nevertheless, the absence of long-term activity of these devices is responsible for late acute thrombosis probably due to the delayed re-endothelialization of the arterial wall over the bare metallic stent struts. Thus, a new generation of DES with a sustained release of therapeutic agents is required to improve long-term results of these devices. In this article, we report an original functionalization of CoCr vascular devices with a hydrophilic, biocompatible and biodegradable cyclodextrins based polymer which acts as a reservoir for lipophilic drugs allowing the sustained release of antiproliferative drugs. In this setting, polydopamine (PDA), a strong adhesive biopolymer, was applied as a first coating layer onto the surface of the metallic CoCr device in order to promote the strong anchorage of a cyclodextrin polymer. This polymer was generated "in situ" from the methylated cyclodextrins and citric acid as a cross-linking agent through a polycondensation reaction. After optimization of the grafting process, the amount of cyclodextrin polymer coated onto the CoCr device was quantified by colorimetric titrations and the resulting film was characterized by scanning electron microscopy (SEM) investigations. The cytocompatibility of the resulting coated film was assessed by cell proliferation and vitality tests. Finally, the ability of this coated device to act as a drug-eluting system was evaluated with paclitaxel, a strong hydrophobic antiproliferative drug, a reference drug used in current vascular drug-eluting stents.


Subject(s)
Biocompatible Materials/chemistry , Cellulose/chemistry , Coronary Restenosis/therapy , Cyclodextrins/chemistry , Drug-Eluting Stents , Microvessels/surgery , Animals , Bivalvia , Chromium/chemistry , Cobalt/chemistry , Drug Delivery Systems , Humans , Microvessels/drug effects , Paclitaxel/chemistry , Paclitaxel/pharmacology
6.
PLoS One ; 4(8): e6718, 2009 Aug 24.
Article in English | MEDLINE | ID: mdl-19701459

ABSTRACT

BACKGROUND: Epithelial-mesenchymal interactions are critical in regulating many aspects of vertebrate embryo development, and for the maintenance of homeostatic equilibrium in adult tissues. The interactions between epithelium and mesenchyme are believed to be mediated by paracrine signals such as cytokines and extracellular matrix components secreted from fibroblasts that affect adjacent epithelia. In this study, we sought to identify the repertoire of microRNAs (miRNAs) in normal lung human fibroblasts and their potential regulation by the cytokines TNF-alpha, IL-1beta and TGF-beta. METHODOLOGY/PRINCIPAL FINDINGS: MiR-155 was significantly induced by inflammatory cytokines TNF-alpha and IL-1beta while it was down-regulated by TGF-beta. Ectopic expression of miR-155 in human fibroblasts induced modulation of a large set of genes related to "cell to cell signalling", "cell morphology" and "cellular movement". This was consistent with an induction of caspase-3 activity and with an increase in cell migration in fibroblasts tranfected with miR-155. Using different miRNA bioinformatic target prediction tools, we found a specific enrichment for miR-155 predicted targets among the population of down-regulated transcripts. Among fibroblast-selective targets, one interesting hit was keratinocyte growth factor (KGF, FGF-7), a member of the fibroblast growth factor (FGF) family, which owns two potential binding sites for miR-155 in its 3'-UTR. Luciferase assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Site-directed mutagenesis revealed that only one out of the 2 potential sites was truly functional. Functional in vitro assays experimentally validated that miR-155 can efficiently target KGF 3'-UTR. Furthermore, in vivo experiments using a mouse model of lung fibrosis showed that miR-155 expression level was correlated with the degree of lung fibrosis. CONCLUSIONS/SIGNIFICANCE: Our results strongly suggest a physiological function of miR-155 in lung fibroblasts. Altogether, this study implicates this miRNA in the regulation by mesenchymal cells of surrounding lung epithelium, making it a potential key player during tissue injury.


Subject(s)
Fibroblast Growth Factor 7/genetics , Lung/metabolism , Mesoderm/chemistry , MicroRNAs/genetics , Epithelial Cells/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Lung/cytology
SELECTION OF CITATIONS
SEARCH DETAIL