ABSTRACT
BACKGROUND: We have previously demonstrated the significant reliance of pancreatic Cancer Stem Cells (PaCSCs) on mitochondrial oxidative phosphorylation (OXPHOS), which enables versatile substrate utilization, including fatty acids (FAs). Notably, dysregulated lipid scavenging and aberrant FA metabolism are implicated in PDAC progression. METHODS & RESULTS: Our bioinformatics analyses revealed elevated expression of lipid metabolism-related genes in PDAC tissue samples compared to normal tissue samples, which correlated with a stemness signature. Additionally, PaCSCs exhibited heightened expression of diverse lipid metabolism genes and increased lipid droplet accumulation compared to differentiated progenies. Treatment with palmitic, oleic, and linolenic FAs notably augmented the self-renewal and chemotherapy resistance of CD133+ PaCSCs. Conversely, inhibitors of FA uptake, storage and metabolism reduced CSC populations both in vitro and in vivo. Mechanistically, inhibition of FA metabolism suppressed OXPHOS activity, inducing energy depletion and subsequent cell death in PaCSCs. Importantly, combining a FAO inhibitor and Gemcitabine treatment enhanced drug efficacy in vitro and in vivo, effectively diminishing the CSC content and functionality. CONCLUSION: Targeting FAO inhibition represents a promising therapeutic strategy against this highly tumorigenic population.
Subject(s)
Carcinogenesis , Drug Resistance, Neoplasm , Fatty Acids , Neoplastic Stem Cells , Oxidation-Reduction , Pancreatic Neoplasms , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Humans , Drug Resistance, Neoplasm/drug effects , Fatty Acids/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor , Carcinogenesis/pathology , Carcinogenesis/drug effects , Animals , Oxidative Phosphorylation/drug effects , Cell Self Renewal/drug effects , Lipid Metabolism/drug effects , AC133 Antigen/metabolism , Mice , Gene Expression Regulation, NeoplasticABSTRACT
BACKGROUND: The main cause of gastric cancer is the infection by the bacterium Helicobacter pylori which induces a chronic inflammation and an epithelial-to-mesenchymal transition (EMT) leading to the emergence of cells with cancer stem cell (CSC) properties. However, the underlying mechanisms have not been fully characterized. Moreover, H. pylori modulates the host cell autophagic process, but a few studies have investigated the role of this process in tumoral transformation. The aim of this study was to determine whether H. pylori-induced autophagy has a role in CSC emergence. METHODS: Autophagic flux in response to H. pylori infection was characterized in AGS cell line expressing the tandem-tagged mCherry-GFP-LC3 protein and using a ratiometric flow cytometry analysis. Then, AGS and MKN45 cell lines were treated with bafilomycin or chloroquine, two pharmaceutical well-known inhibitors of autophagy, and different EMT and CSC characteristics were analyzed. RESULTS: First, a co-expression of the gastric CSC marker CD44 and the autophagic marker LC3 in mice and human stomach tissues infected with H. pylori was observed. Then, we demonstrated in vitro that H. pylori was able to activate the autophagy process with a reduced autophagic flux. Finally, infected cells were treated with autophagy inhibitors, which reduced (i) appearance of mesenchymal phenotypes and migration ability related to EMT and (ii) CD44 expression as well as tumorsphere formation capacities reflecting CSC properties. CONCLUSION: In conclusion, all these data show that H. pylori-induced autophagy is implicated in gastric CSC emergence and could represent an interesting therapeutic target.
Subject(s)
Autophagy/physiology , Helicobacter Infections/microbiology , Helicobacter pylori/physiology , Neoplastic Stem Cells/microbiology , Stomach Neoplasms/microbiology , Animals , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Helicobacter Infections/complications , Humans , Hyaluronan Receptors/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Stomach/cytology , Stomach/microbiologyABSTRACT
Metformin is a biguanide molecule used since 1957 to treat type 2 diabetes patients. In addition to its hypoglycemic effects, epidemiological studies have shown that metformin can be associated with a decrease in cancer development risk in diabetic populations. Thus, since 2005 this molecule is largely studied for its antitumoural properties in different types of cancer. The potential antitumoural effect of metformin in gastric cancer has been poorly studied. Here, we detailed the different described mechanisms implicated in the antitumoural effect of metformin in gastric cancer, from the signalling pathways to the functional effects on gastric cancer cell lines and gastric cancer stem cells.
Subject(s)
Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Stomach Neoplasms/drug therapy , Humans , Prognosis , Signal TransductionABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive disease characterized by its metastatic potential and chemoresistance. These traits are partially attributable to the highly tumorigenic pancreatic cancer stem cells (PaCSCs). Interestingly, these cells show unique features in order to sustain their identity and functionality, some of them amenable for therapeutic intervention. Screening of phospho-receptor tyrosine kinases revealed that PaCSCs harbored increased activation of anaplastic lymphoma kinase (ALK). We subsequently demonstrated that oncogenic ALK signaling contributes to tumorigenicity in PDAC patient-derived xenografts (PDXs) by promoting stemness through ligand-dependent activation. Indeed, the ALK ligands midkine (MDK) or pleiotrophin (PTN) increased self-renewal, clonogenicity and CSC frequency in several in vitro local and metastatic PDX models. Conversely, treatment with the clinically-approved ALK inhibitors Crizotinib and Ensartinib decreased PaCSC content and functionality in vitro and in vivo, by inducing cell death. Strikingly, ALK inhibitors sensitized chemoresistant PaCSCs to Gemcitabine, as the most used chemotherapeutic agent for PDAC treatment. Consequently, ALK inhibition delayed tumor relapse after chemotherapy in vivo by effectively decreasing the content of PaCSCs. In summary, our results demonstrate that targeting the MDK/PTN-ALK axis with clinically-approved inhibitors impairs in vivo tumorigenicity and chemoresistance in PDAC suggesting a new treatment approach to improve the long-term survival of PDAC patients.
Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Anaplastic Lymphoma Kinase , Drug Resistance, Neoplasm , Neoplasm Recurrence, Local , Receptor Protein-Tyrosine Kinases , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Pancreatic NeoplasmsABSTRACT
Metformin is widely prescribed to treat type 2 diabetes. Diabetes patients treated with metformin have a decreased risk of cancers, including gastric cancer. Among the factors influencing digestive carcinogenesis, gut microbiota interactions have been intensively studied. Metformin exhibits direct antimicrobial activity toward Helicobacterpylori, which plays a crucial role in gastric carcinogenesis. Mice were infected with H. pylori and treated for 12 days with either metformin or phosphate-buffered saline (PBS) as a control. At the end of the treatment period, the mice were euthanized and cecal and intestinal contents and stool were collected. The gut microbiota of the three different digestive sites (stool, cecal, and intestinal contents) were characterized through 16S RNA gene sequencing. In mice infected with H. pylori, metformin significantly decreased alpha diversity indices and led to significant variation in the relative abundance of some bacterial taxa including Clostridium and Lactobacillus, which were directly inhibited by metformin in vitro. PICRUSt analysis suggested that metformin modifies functional pathway expression, including a decrease in nitrate reducing bacteria in the intestine. Metformin significantly changed the composition and predicted function of the gut microbiota of mice infected with H. pylori; these modifications could be implicated in digestive cancer prevention.
ABSTRACT
Previously regarded as simple fat storage particles, new evidence suggests that lipid droplets (LDs) are dynamic and functional organelles involved in key cellular processes such as membrane biosynthesis, lipid metabolism, cell signalling and inflammation. Indeed, an increased LD content is one of the most apparent features resulting from lipid metabolism reprogramming necessary to support the basic functions of cancer cells. LDs have been associated to different cellular processes involved in cancer progression and aggressiveness, such as tumorigenicity, invasion and metastasis, as well as chemoresistance. Interestingly, all of these processes are controlled by a subpopulation of highly aggressive tumoral cells named cancer stem cells (CSCs), suggesting that LDs may be fundamental elements for stemness in cancer. Considering the key role of CSCs on chemoresistance and disease relapse, main factors of therapy failure, the design of novel therapeutic approaches targeting these cells may be the only chance for long-term survival in cancer patients. In this sense, their biology and functional properties render LDs excellent candidates for target discovery and design of combined therapeutic strategies. In this review, we summarise the current knowledge identifying LDs and CSCs as main contributors to cancer aggressiveness, metastasis and chemoresistance.
ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, partly due to its intrinsic aggressiveness, metastatic potential, and chemoresistance of the contained cancer stem cells (CSCs). Pancreatic CSCs strongly rely on mitochondrial metabolism to maintain their stemness, therefore representing a putative target for their elimination. Since mitochondrial homeostasis depends on the tightly controlled balance between fusion and fission processes, namely mitochondrial dynamics, we aim to study this mechanism in the context of stemness. In human PDAC tissues, the mitochondrial fission gene DNM1L (DRP1) was overexpressed and positively correlated with the stemness signature. Moreover, we observe that primary human CSCs display smaller mitochondria and a higher DRP1/MFN2 expression ratio, indicating the activation of the mitochondrial fission. Interestingly, treatment with the DRP1 inhibitor mDivi-1 induced dose-dependent apoptosis, especially in CD133+ CSCs, due to the accumulation of dysfunctional mitochondria and the subsequent energy crisis in this subpopulation. Mechanistically, mDivi-1 inhibited stemness-related features, such as self-renewal, tumorigenicity, and invasiveness and chemosensitized the cells to the cytotoxic effects of Gemcitabine. In summary, mitochondrial fission is an essential process for pancreatic CSCs and represents an attractive target for designing novel multimodal treatments that will more efficiently eliminate cells with high tumorigenic potential.
ABSTRACT
Glutamoptosis is the induction of apoptotic cell death as a consequence of the aberrant activation of glutaminolysis and mTORC1 signaling during nutritional imbalance in proliferating cells. The role of the bioenergetic sensor AMPK during glutamoptosis is not defined yet. Here, we show that AMPK reactivation blocks both the glutamine-dependent activation of mTORC1 and glutamoptosis in vitro and in vivo. We also show that glutamine is used for asparagine synthesis and the GABA shunt to produce ATP and to inhibit AMPK, independently of glutaminolysis. Overall, our results indicate that glutamine metabolism is connected with mTORC1 activation through two parallel pathways: an acute alpha-ketoglutarate-dependent pathway; and a secondary ATP/AMPK-dependent pathway. This dual metabolic connection between glutamine and mTORC1 must be considered for the future design of therapeutic strategies to prevent cell growth in diseases such as cancer.
Subject(s)
Apoptosis/physiology , Cell Proliferation/physiology , Glutamine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction/physiology , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , HCT116 Cells , HEK293 Cells , Humans , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , Xenograft Model Antitumor Assays/methodsABSTRACT
Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is an extremely lethal disease due to late diagnosis, aggressiveness and lack of effective therapies. Considering its intrinsic heterogeneity, patient stratification models based on transcriptomic and genomic signatures, with partially overlapping subgroups, have been established. Besides molecular alterations, PDAC tumours show a strong desmoplastic response, resulting in profound metabolic reprogramming involving increased glucose and amino acid consumption, as well as lipid scavenging and biosynthesis. Interestingly, recent works have also revealed the existence of metabolic subtypes with differential prognosis within PDAC, which correlated to defined molecular subclasses in patients: lipogenic subtype correlated with a classical/progenitor signature, while glycolytic tumours associated with the highly aggressive basal/squamous profile. Bioinformatic analyses have demonstrated that the representative genes of each metabolic subtype are up-regulated in PDAC samples and predict patient survival. This suggests a relationship between the genetic signature, metabolic profile, and aggressiveness of the tumour. Considering all this, defining metabolic subtypes represents a clear opportunity for patient stratification considering tumour functional behaviour independently of their mutational background.
ABSTRACT
Renal cell carcinoma (RCC) represents the main renal tumors and are highly metastatic. They are heterogeneous tumors and are subdivided in 12 different subtypes where clear cell RCC (ccRCC) represents the main subtype. Tumor extracellular matrix (ECM) is composed, in RCC, mainly of different fibrillar collagens, fibronectin, and components of the basement membrane such as laminin, collagen IV, and heparan sulfate proteoglycan. Little is known about the role of these ECM components on RCC cell behavior. Analysis from The Human Protein Atlas dataset shows that high collagen 1 or 4A2, fibronectin, entactin, or syndecan 3 expression is associated with poor prognosis whereas high collagen 4A3, syndecan 4, or glypican 4 expression is associated with increased patient survival. We then analyzed the impact of collagen 1, fibronectin 1 or Matrigel on three different RCC cell lines (Renca, 786-O and Caki-2) in vitro. We found that all the different matrices have little effect on RCC cell proliferation. The three cell lines adhere differently on the three matrices, suggesting the involvement of a different set of integrins. Among the 3 matrices tested, collagen 1 is the only component able to increase migration in the three cell lines as well as MMP-2 and 9 activity. Moreover, collagen 1 induces MMP-2 mRNA expression and is implicated in the epithelial to mesenchymal transition of two RCC cell lines via Zeb2 (Renca) or Snail 2 (Caki-2) mRNA expression. Taken together, our results show that collagen 1 is the main component of the ECM that enhances tumor cell invasion in RCC, which is important for the metastasic process.
ABSTRACT
AIM: Helicobacter pylori infection is a worldwide infection, its eradication rates with conventional therapies have fallen to unacceptable levels. In this context we were interested in metformin, to determine its effect on H. pylori growth. MATERIALS & METHODS: Antimicrobial susceptibility tests and survival curves were performed in vitro and a H. pylori-infected mice model was used to determine metformin effect in vivo. RESULTS: Helicobacter pylori survival and growth were decreased in presence of metformin. Furthermore, metformin-treated mice had significantly less bacteria in their stomach than the untreated mice. CONCLUSION: Our work is the first to demonstrate a direct antimicrobial effect of metformin on H. pylori, indicating that this molecule has not yet revealed its full potential.
Subject(s)
Anti-Infective Agents/pharmacology , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Metformin/pharmacology , Animals , Anti-Infective Agents/therapeutic use , Cell Line, Tumor , Coculture Techniques , Disease Models, Animal , Female , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/growth & development , Humans , Metformin/therapeutic use , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Statistics, NonparametricABSTRACT
Gastric cancer is the third leading cause of cancer-related deaths worldwide and has still a poor prognosis. Therefore, new therapeutic strategies are needed: among them, targeting cancer stem cells (CSCs) could offer new opportunities. The aim of our study was to evaluate the anti-tumoural effect of metformin on gastric cancer in vitro and in vivo and especially, to determine whether this molecule could target the gastric CSCs. Metformin effects were evaluated on the proliferation and tumourigenic properties of the gastric CSCs from patient-derived primary tumour xenografts (PDXs) and cancer cell lines (MKN45, AGS and MKN74) in vitro in conventional 2 dimensional (2D) and in 3 dimensional (3D) culture systems, in which only CSCs are able to form tumourspheres and in mouse xenograft models in vivo. Metformin induced a cell cycle arrest, which decreased cell proliferation in the 2D cultures. In a 3D culture system, metformin decreased the number of tumourspheres, revealing its capacity to target the CSCs. This effect was confirmed by the study of the expression of CSC markers (CD44 and Sox2) and differentiation markers (Kruppel-like factor 4 and MUC5AC), which were decreased or increased in response to metformin, respectively. Finally, in vivo treatment of PDXs with metformin led to a tumour growth delay and decreased the self-renewal ability of the CSCs. These results suggest that the use of metformin could represent an efficient strategy to inhibit tumour growth by targeting gastric CSCs.