Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
EMBO J ; 42(13): e112095, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37226896

ABSTRACT

The unique nerve terminal targeting of botulinum neurotoxin type A (BoNT/A) is due to its capacity to bind two receptors on the neuronal plasma membrane: polysialoganglioside (PSG) and synaptic vesicle glycoprotein 2 (SV2). Whether and how PSGs and SV2 may coordinate other proteins for BoNT/A recruitment and internalization remains unknown. Here, we demonstrate that the targeted endocytosis of BoNT/A into synaptic vesicles (SVs) requires a tripartite surface nanocluster. Live-cell super-resolution imaging and electron microscopy of catalytically inactivated BoNT/A wildtype and receptor-binding-deficient mutants in cultured hippocampal neurons demonstrated that BoNT/A must bind coincidentally to a PSG and SV2 to target synaptic vesicles. We reveal that BoNT/A simultaneously interacts with a preassembled PSG-synaptotagmin-1 (Syt1) complex and SV2 on the neuronal plasma membrane, facilitating Syt1-SV2 nanoclustering that controls endocytic sorting of the toxin into synaptic vesicles. Syt1 CRISPRi knockdown suppressed BoNT/A- and BoNT/E-induced neurointoxication as quantified by SNAP-25 cleavage, suggesting that this tripartite nanocluster may be a unifying entry point for selected botulinum neurotoxins that hijack this for synaptic vesicle targeting.


Subject(s)
Botulinum Toxins, Type A , Botulinum Toxins, Type A/metabolism , Cell Membrane/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Synaptic Vesicles/metabolism , Animals , Rats
2.
J Neurosci ; 44(27)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38839301

ABSTRACT

Phospholipids (PLs) are asymmetrically distributed at the plasma membrane. This asymmetric lipid distribution is transiently altered during calcium-regulated exocytosis, but the impact of this transient remodeling on presynaptic function is currently unknown. As phospholipid scramblase 1 (PLSCR1) randomizes PL distribution between the two leaflets of the plasma membrane in response to calcium activation, we set out to determine its role in neurotransmission. We report here that PLSCR1 is expressed in cerebellar granule cells (GrCs) and that PLSCR1-dependent phosphatidylserine egress occurred at synapses in response to neuron stimulation. Synaptic transmission is impaired at GrC Plscr1 -/- synapses, and both PS egress and synaptic vesicle (SV) endocytosis are inhibited in Plscr1 -/- cultured neurons from male and female mice, demonstrating that PLSCR1 controls PL asymmetry remodeling and SV retrieval following neurotransmitter release. Altogether, our data reveal a novel key role for PLSCR1 in SV recycling and provide the first evidence that PL scrambling at the plasma membrane is a prerequisite for optimal presynaptic performance.


Subject(s)
Cerebellum , Phospholipid Transfer Proteins , Synapses , Synaptic Transmission , Synaptic Vesicles , Animals , Synaptic Vesicles/metabolism , Synaptic Transmission/physiology , Mice , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Female , Male , Cerebellum/cytology , Synapses/metabolism , Synapses/physiology , Cells, Cultured , Mice, Knockout , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Endocytosis/physiology
3.
Brain ; 147(7): 2289-2307, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38451707

ABSTRACT

Frontotemporal dementia and amyotrophic lateral sclerosis are common forms of neurodegenerative disease that share overlapping genetics and pathologies. Crucially, no significantly disease-modifying treatments are available for either disease. Identifying the earliest changes that initiate neuronal dysfunction is important for designing effective intervention therapeutics. The genes mutated in genetic forms of frontotemporal dementia and amyotrophic lateral sclerosis have diverse cellular functions, and multiple disease mechanisms have been proposed for both. Identification of a convergent disease mechanism in frontotemporal dementia and amyotrophic lateral sclerosis would focus research for a targetable pathway, which could potentially effectively treat all forms of frontotemporal dementia and amyotrophic lateral sclerosis (both familial and sporadic). Synaptopathies are diseases resulting from physiological dysfunction of synapses, and define the earliest stages in multiple neuronal diseases, with synapse loss a key feature in dementia. At the presynapse, the process of synaptic vesicle recruitment, fusion and recycling is necessary for activity-dependent neurotransmitter release. The unique distal location of the presynaptic terminal means the tight spatio-temporal control of presynaptic homeostasis is dependent on efficient local protein translation and degradation. Recently, numerous publications have shown that mutations associated with frontotemporal dementia and amyotrophic lateral sclerosis present with synaptopathy characterized by presynaptic dysfunction. This review will describe the complex local signalling and membrane trafficking events that occur at the presynapse to facilitate neurotransmission and will summarize recent publications linking frontotemporal dementia/amyotrophic lateral sclerosis genetic mutations to presynaptic function. This evidence indicates that presynaptic synaptopathy is an early and convergent event in frontotemporal dementia and amyotrophic lateral sclerosis and illustrates the need for further research in this area, to identify potential therapeutic targets with the ability to impact this convergent pathomechanism.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Presynaptic Terminals , Synapses , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Synapses/pathology , Presynaptic Terminals/pathology , Presynaptic Terminals/metabolism , Animals , Mutation
4.
J Neurosci ; 43(11): 2002-2020, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36759195

ABSTRACT

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a severe early-onset epileptic encephalopathy resulting mainly from de novo mutations in the X-linked CDKL5 gene. To determine whether loss of presynaptic CDKL5 function contributes to CDD, we examined synaptic vesicle (SV) recycling in primary hippocampal neurons generated from Cdkl5 knockout rat males. Using a genetically encoded reporter, we revealed that CDKL5 is selectively required for efficient SV endocytosis. We showed that CDKL5 kinase activity is both necessary and sufficient for optimal SV endocytosis, since kinase-inactive mutations failed to correct endocytosis in Cdkl5 knockout neurons, whereas the isolated CDKL5 kinase domain fully restored SV endocytosis kinetics. Finally, we demonstrated that CDKL5-mediated phosphorylation of amphiphysin 1, a putative presynaptic target, is not required for CDKL5-dependent control of SV endocytosis. Overall, our findings reveal a key presynaptic role for CDKL5 kinase activity and enhance our insight into how its dysfunction may culminate in CDD.SIGNIFICANCE STATEMENT Loss of cyclin-dependent kinase like 5 (CDKL5) function is a leading cause of monogenic childhood epileptic encephalopathy. However, information regarding its biological role is scarce. In this study, we reveal a selective presynaptic role for CDKL5 in synaptic vesicle endocytosis and that its protein kinase activity is both necessary and sufficient for this role. The isolated protein kinase domain is sufficient to correct this loss of function, which may facilitate future gene therapy strategies if presynaptic dysfunction is proven to be central to the disorder. It also reveals that a CDKL5-specific substrate is located at the presynapse, the phosphorylation of which is required for optimal SV endocytosis.


Subject(s)
Spasms, Infantile , Synaptic Vesicles , Animals , Male , Rats , Cyclin-Dependent Kinases/metabolism , Endocytosis/physiology , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Synaptic Vesicles/metabolism
5.
J Neurosci ; 42(8): 1618-1628, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34996816

ABSTRACT

Synaptic vesicle (SV) recycling is essential for the maintenance of neurotransmission, with a number of neurodevelopmental disorders linked to defects in this process. Fragile X syndrome (FXS) results from a loss of fragile X mental retardation protein (FMRP) encoded by the FMR1 gene. Hyperexcitability of neuronal circuits is a key feature of FXS, therefore we investigated whether SV recycling was affected by the absence of FMRP during increased neuronal activity. We revealed that primary neuronal cultures from male Fmr1 knock-out (KO) rats display a specific defect in activity-dependent bulk endocytosis (ADBE). ADBE is dominant during intense neuronal activity, and this defect resulted in an inability of Fmr1 KO neurons to sustain SV recycling during trains of high-frequency stimulation. Using a molecular replacement strategy, we also revealed that a human FMRP mutant that cannot bind BK channels failed to correct ADBE dysfunction in KO neurons, however this dysfunction was corrected by BK channel agonists. Therefore, FMRP performs a key role in sustaining neurotransmitter release via selective control of ADBE, suggesting intervention via this endocytosis mode may correct the hyperexcitability observed in FXS.SIGNIFICANCE STATEMENT Loss of fragile X mental retardation protein (FMRP) results in fragile X syndrome (FXS), however whether its loss has a direct role in neurotransmitter release remains a matter of debate. We demonstrate that neurons lacking FMRP display a specific defect in a mechanism that sustains neurotransmitter release during intense neuronal firing, called activity-dependent bulk endocytosis (ADBE). This discovery provides key insights into mechanisms of brain communication that occur because of loss of FMRP function. Importantly it also reveals ADBE as a potential therapeutic target to correct the circuit hyperexcitability observed in FXS.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Animals , Endocytosis , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Large-Conductance Calcium-Activated Potassium Channels/genetics , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Male , Neurotransmitter Agents/genetics , Neurotransmitter Agents/metabolism , Rats
6.
J Neurochem ; 166(2): 248-264, 2023 07.
Article in English | MEDLINE | ID: mdl-37243578

ABSTRACT

The multidomain adaptor protein amphiphysin-1 (Amph1) is an important coordinator of clathrin-mediated endocytosis in non-neuronal cells and synaptic vesicle (SV) endocytosis at central nerve terminals. Amph1 contains a lipid-binding N-BAR (Bin/Amphiphysin/Rvs) domain, central proline-rich (PRD) and clathrin/AP2 (CLAP) domains, and a C-terminal SH3 domain. Amph1 interacts with both lipids and proteins, with all of these interactions required for SV endocytosis, with the exception of the Amph1 PRD. The Amph1 PRD associates with the endocytosis protein endophilin A1, however, the role of this interaction in SV endocytosis has not been investigated. In this study, we set out to determine whether the Amph1 PRD and its interaction with endophilin A1 was essential for efficient SV endocytosis at typical small central synapses. To achieve this, domain-specific interactions of Amph1 were validated using in vitro GST pull-down assays, with the role of these interactions in SV endocytosis determined in molecular replacement experiments in primary neuronal culture. Using this approach, we confirmed important roles for CLAP and SH3 domain interactions of Amph1 in the control of SV endocytosis. Importantly, we identified the interaction site for endophilin A1 within the Amph1 PRD and exploited specific binding mutants to reveal a key role for this interaction in SV endocytosis. Finally, we determined that the formation of the Amph1-endophilin A1 complex is dependent on the phosphorylation status of Amph1-S293 within the PRD and that the phosphorylation status of this residue is essential for efficient SV regeneration. This work, therefore, reveals a key role for the dephosphorylation-dependent Amph1-endophilin A1 interaction in efficient SV endocytosis.


Subject(s)
Synapses , Synaptic Vesicles , Synaptic Vesicles/metabolism , Synapses/metabolism , Clathrin/metabolism , Endocytosis/physiology
7.
J Biol Chem ; 296: 100266, 2021.
Article in English | MEDLINE | ID: mdl-33769286

ABSTRACT

The accurate retrieval of synaptic vesicle (SV) proteins during endocytosis is essential for the maintenance of neurotransmission. Synaptophysin (Syp) and synaptobrevin-II (SybII) are the most abundant proteins on SVs. Neurons lacking Syp display defects in the activity-dependent retrieval of SybII and a general slowing of SV endocytosis. To determine the role of the cytoplasmic C terminus of Syp in the control of these two events, we performed molecular replacement studies in primary cultures of Syp knockout neurons using genetically encoded reporters of SV cargo trafficking at physiological temperatures. Under these conditions, we discovered, 1) no slowing in SV endocytosis in Syp knockout neurons, and 2) a continued defect in SybII retrieval in knockout neurons expressing a form of Syp lacking its C terminus. Sequential truncations of the Syp C-terminus revealed a cryptic interaction site for the SNARE motif of SybII that was concealed in the full-length form. This suggests that a conformational change within the Syp C terminus is key to permitting SybII binding and thus its accurate retrieval. Furthermore, this study reveals that the sole presynaptic role of Syp is the control of SybII retrieval, since no defect in SV endocytosis kinetics was observed at physiological temperatures.


Subject(s)
Neurons/metabolism , Synaptic Vesicles/genetics , Synaptophysin/genetics , Vesicle-Associated Membrane Protein 2/genetics , Endocytosis/genetics , Gene Knockout Techniques , Hippocampus/metabolism , Hippocampus/pathology , Neurons/chemistry , Primary Cell Culture , SNARE Proteins/genetics , Synaptic Transmission/genetics , Synaptophysin/chemistry , Synaptosomes/chemistry , Synaptosomes/metabolism
8.
J Neurochem ; 160(3): 412-425, 2022 02.
Article in English | MEDLINE | ID: mdl-34855215

ABSTRACT

Mutations in the ESCRT-III subunit CHMP2B cause frontotemporal dementia (FTD) and lead to impaired endolysosomal trafficking and lysosomal storage pathology in neurons. We investigated the effect of mutant CHMP2B on synaptic pathology, as ESCRT function was recently implicated in the degradation of synaptic vesicle (SV) proteins. We report here that expression of C-terminally truncated mutant CHMP2B results in a novel synaptopathy. This unique synaptic pathology is characterised by selective retention of presynaptic SV trafficking proteins in aged mutant CHMP2B transgenic mice, despite significant loss of postsynaptic proteins. Furthermore, ultrastructural analysis of primary cortical cultures from transgenic CHMP2B mice revealed a significant increase in the number of presynaptic endosomes, while neurons expressing mutant CHMP2B display defective SV recycling and alterations to functional SV pools. Therefore, we reveal how mutations in CHMP2B affect specific presynaptic proteins and SV recycling, identifying CHMP2B FTD as a novel synaptopathy. This novel synaptopathic mechanism of impaired SV physiology may be a key early event in multiple forms of FTD, since proteins that mediate the most common genetic forms of FTD all localise at the presynapse.


Subject(s)
Endosomal Sorting Complexes Required for Transport/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Nerve Tissue Proteins/genetics , Synapses/pathology , Synaptic Vesicles/metabolism , Synaptic Vesicles/pathology , Aging/metabolism , Aging/pathology , Animals , Cerebral Cortex/pathology , Disease Models, Animal , Frontotemporal Dementia/pathology , Mice , Mice, Knockout , Primary Cell Culture , Receptors, Presynaptic/metabolism
9.
J Neurosci ; 40(23): 4586-4595, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32341095

ABSTRACT

The epilepsy-linked gene SV2A, has a number of potential roles in the synaptic vesicle (SV) life cycle. However, how loss of SV2A function translates into presynaptic dysfunction and ultimately seizure activity is still undetermined. In this study, we examined whether the first SV2A mutation identified in human disease (R383Q) could provide information regarding which SV2A-dependent events are critical in the translation to epilepsy. We utilized a molecular replacement strategy in which exogenous SV2A was expressed in mouse neuronal cultures of either sex, which had been depleted of endogenous SV2A to mimic the homozygous human condition. We found that the R383Q mutation resulted in a mislocalization of SV2A from SVs to the plasma membrane, but had no effect on its activity-dependent trafficking. This SV2A mutant displayed reduced mobility when stranded on the plasma membrane and reduced binding to its interaction partner synaptotagmin-1 (Syt1). Furthermore, the R383Q mutant failed to rescue reduced expression and dysfunctional activity-dependent trafficking of Syt1 in the absence of endogenous SV2A. This suggests that the inability to control Syt1 expression and trafficking at the presynapse may be key in the transition from loss of SV2A function to seizure activity.SIGNIFICANCE STATEMENT SV2A is a synaptic vesicle (SV) protein, the absence or dysfunction of which is linked to epilepsy. However, the series of molecular events that result in this neurological disorder is still undetermined. We demonstrate here that the first human mutation in SV2A identified in an individual with epilepsy displays reduced binding to synaptotagmin-1 (Syt1), an SV protein essential for synchronous neurotransmitter release. Furthermore, this mutant cannot correct alterations in both Syt1 expression and trafficking when expressed in the absence of endogenous SV2A (to mimic the homozygous human condition). This suggests that the inability to control Syt1 expression and trafficking may be key in the transition from loss of SV2A function to seizure activity.


Subject(s)
Epilepsy/genetics , Membrane Glycoproteins/genetics , Mutation, Missense/physiology , Nerve Tissue Proteins/genetics , Protein Transport/physiology , Synaptotagmin I/biosynthesis , Synaptotagmin I/genetics , Animals , Cells, Cultured , Epilepsy/metabolism , Female , Gene Expression , HEK293 Cells , Humans , Male , Membrane Glycoproteins/deficiency , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/deficiency
10.
J Neurochem ; 159(1): 78-89, 2021 10.
Article in English | MEDLINE | ID: mdl-34468992

ABSTRACT

Synaptobrevin-2 (Syb2) is a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) that is essential for neurotransmitter release. It is the most numerous protein on a synaptic vesicle (SV) and drives SV fusion via interactions with its cognate SNARE partners on the presynaptic plasma membrane. Synaptophysin (Syp) is the second most abundant protein on SVs; however, in contrast to Syb2, it has no obligatory role in neurotransmission. Syp interacts with Syb2 on SVs, and the molecular nature of its interaction with Syb2 and its physiological role has been debated for decades. However, recent studies have revealed that the sole physiological role of Syp at the presynapse is to ensure the efficient retrieval of Syb2 during SV endocytosis. In this review, current theories surrounding the role of Syp in Syb2 trafficking will be discussed, in addition to the debate regarding the molecular nature of their interaction. A unifying model is presented that describes how Syp controls Syb2 function as part of an integrated mechanism involving key molecular players such as intersectin-1 and AP180/CALM. Finally, key future questions surrounding the role of Syp-dependent Syb2 trafficking will be posed, with respect to brain function in health and disease.


Subject(s)
Presynaptic Terminals/metabolism , Protein Transport/physiology , SNARE Proteins/metabolism , Synaptophysin/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Animals , Endocytosis/physiology , Humans , SNARE Proteins/genetics , Synapses/genetics , Synapses/metabolism , Synaptophysin/genetics , Vesicle-Associated Membrane Protein 2/genetics
11.
J Neurochem ; 157(2): 179-207, 2021 04.
Article in English | MEDLINE | ID: mdl-32378740

ABSTRACT

The activity-dependent fusion, retrieval and recycling of synaptic vesicles is essential for the maintenance of neurotransmission. Until relatively recently it was believed that most mutations in genes that were essential for this process would be incompatible with life, because of this fundamental role. However, an ever-expanding number of mutations in this very cohort of genes are being identified in individuals with neurodevelopmental disorders, including autism, intellectual disability and epilepsy. This article will summarize the current state of knowledge linking mutations in presynaptic genes to neurodevelopmental disorders by sequentially covering the various stages of the synaptic vesicle life cycle. It will also discuss how perturbations of specific stages within this recycling process could translate into human disease. Finally, it will also provide perspectives on the potential for future therapy that are targeted to presynaptic function.


Subject(s)
Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Animals , Endocytosis/physiology , Exocytosis/physiology , Humans
12.
J Neurochem ; 158(5): 1094-1109, 2021 09.
Article in English | MEDLINE | ID: mdl-34327719

ABSTRACT

Fragile X mental retardation protein (FMRP) is a neuronal protein mediating multiple functions, with its absence resulting in one of the most common monogenic causes of autism, Fragile X syndrome (FXS). Analyses of FXS pathophysiology have identified a range of aberrations in synaptic signaling pathways and plasticity associated with group I metabotropic glutamate (mGlu) receptors. These studies, however, have mostly focused on the post-synaptic functions of FMRP and mGlu receptor activation, and relatively little is known about their presynaptic effects. Neurotransmitter release is mediated via multiple forms of synaptic vesicle (SV) fusion, each of which contributes to specific neuronal functions. The impacts of mGlu receptor activation and loss of FMRP on these SV fusion events remain unexplored. Here we combined electrophysiological and fluorescence imaging analyses on primary hippocampal cultures prepared from an Fmr1 knockout (KO) rat model. Compared to wild-type (WT) hippocampal neurons, KO neurons displayed an increase in the frequency of spontaneous excitatory post-synaptic currents (sEPSCs), as well as spontaneous SV fusion events. Pharmacological activation of mGlu receptors in WT neurons caused a similar increase in spontaneous SV fusion and sEPSC frequency. Notably, this increase in SV fusion was not observed when spontaneous activity was blocked using the sodium channel antagonist tetrodotoxin. Importantly, the effect of mGlu receptor activation on spontaneous SV fusion was occluded in Fmr1 KO neurons. Together, our results reveal that FMRP represses spontaneous presynaptic SV fusion, whereas mGlu receptor activation increases this event. This reciprocal control appears to be mediated via their regulation of intrinsic neuronal excitability.


Subject(s)
Fragile X Mental Retardation Protein/antagonists & inhibitors , Fragile X Mental Retardation Protein/metabolism , Receptors, Metabotropic Glutamate/metabolism , Synaptic Vesicles/metabolism , Animals , Cells, Cultured , Excitatory Postsynaptic Potentials/physiology , Fragile X Mental Retardation Protein/genetics , Male , Membrane Fusion/physiology , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Receptors, Metabotropic Glutamate/genetics , Synaptic Vesicles/genetics
13.
J Neurochem ; 157(2): 102-106, 2021 04.
Article in English | MEDLINE | ID: mdl-33728654

ABSTRACT

The synapse is formed between a presynapse (which releases neurotransmitter) and the postsynapse (which transduces this chemical signal). Over the past decade, presynaptic dysfunction has emerged as a key mediator of a series of neurodevelopmental and neurodegenerative disorders. This special issue will highlight some of the important presynaptic molecules and mechanisms that are disrupted in these conditions and reveal potential routes for therapy.


Subject(s)
Neurodegenerative Diseases , Neurotransmitter Agents/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Vesicles/metabolism , Animals , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism
14.
J Neurosci ; 39(42): 8209-8216, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619489

ABSTRACT

Neurotransmission is sustained by endocytosis and refilling of synaptic vesicles (SVs) locally within the presynapse. Until recently, a consensus formed that after exocytosis, SVs are recovered by either fusion pore closure (kiss-and-run) or clathrin-mediated endocytosis directly from the plasma membrane. However, recent data have revealed that SV formation is more complex than previously envisaged. For example, two additional recycling pathways have been discovered, ultrafast endocytosis and activity-dependent bulk endocytosis, in which SVs are regenerated from the internalized membrane and synaptic endosomes. Furthermore, these diverse modes of endocytosis appear to influence both the molecular composition and subsequent physiological role of individual SVs. In addition, previously unknown complexity in SV refilling and reclustering has been revealed. This review presents a modern view of the SV life cycle and discusses how neuronal subtype, physiological temperature, and individual activity patterns can recruit different endocytic modes to generate new SVs and sculpt subsequent presynaptic performance.


Subject(s)
Neurons/metabolism , Synapses/metabolism , Synaptic Vesicles/metabolism , Animals , Cell Membrane/metabolism , Endocytosis/physiology , Endosomes/metabolism , Humans , Synaptic Transmission/physiology
15.
Neurobiol Dis ; 134: 104637, 2020 02.
Article in English | MEDLINE | ID: mdl-31614197

ABSTRACT

Huntington's disease (HD) is caused by CAG repeat expansion within the HTT gene, with the dysfunction and eventual loss of striatal medium spiny neurons a notable feature. Since medium spiny neurons receive high amounts of synaptic input, we hypothesised that this vulnerability originates from an inability to sustain presynaptic performance during intense neuronal activity. To test this hypothesis, primary cultures of either hippocampal or striatal neurons were prepared from either wild-type mice or a knock-in HD mouse model which contains 140 poly-glutamine repeats in the huntingtin protein (httQ140/Q140). We identified a striatum-specific defect in synaptic vesicle (SV) endocytosis in httQ140/Q140 neurons that was only revealed during high frequency stimulation. This dysfunction was also present in neurons that were heterozygous for the mutant HTT allele. Depletion of endogenous huntingtin using hydrophobically-modified siRNA recapitulated this activity-dependent defect in wild-type neurons, whereas depletion of mutant huntingtin did not rescue the effect in httQ140/Q140 neurons. Importantly, this SV endocytosis defect was corrected by overexpression of wild-type huntingtin in homozygous httQ140/Q140 neurons. Therefore, we have identified an activity-dependent and striatum-specific signature of presynaptic dysfunction in neurons derived from pre-symptomatic HD mice, which is due to loss of wild-type huntingtin function. This presynaptic defect may render this specific neuronal subtype unable to operate efficiently during high frequency activity patterns, potentially resulting in dysfunctional neurotransmission, synapse failure and ultimately degeneration.


Subject(s)
Corpus Striatum/metabolism , Endocytosis/physiology , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Neurons/metabolism , Synaptic Vesicles/metabolism , Animals , Disease Models, Animal , Gene Knock-In Techniques , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Mice , Mice, Inbred C57BL
16.
J Neurochem ; 151(5): 570-583, 2019 12.
Article in English | MEDLINE | ID: mdl-31479508

ABSTRACT

Activity-dependent bulk endocytosis generates synaptic vesicles (SVs) during intense neuronal activity via a two-step process. First, bulk endosomes are formed direct from the plasma membrane from which SVs are then generated. SV generation from bulk endosomes requires the efflux of previously accumulated calcium and activation of the protein phosphatase calcineurin. However, it is still unknown how calcineurin mediates SV generation. We addressed this question using a series of acute interventions that decoupled the generation of SVs from bulk endosomes in rat primary neuronal culture. This was achieved by either disruption of protein-protein interactions via delivery of competitive peptides, or inhibition of enzyme activity by known inhibitors. SV generation was monitored using either a morphological horseradish peroxidase assay or an optical assay that monitors the replenishment of the reserve SV pool. We found that SV generation was inhibited by, (i) peptides that disrupt calcineurin interactions, (ii) an inhibitor of dynamin I GTPase activity and (iii) peptides that disrupt the phosphorylation-dependent dynamin I-syndapin I interaction. Peptides that disrupted syndapin I interactions with eps15 homology domain-containing proteins had no effect. This revealed that (i) calcineurin must be localized at bulk endosomes to mediate its effect, (ii) dynamin I GTPase activity is essential for SV fission and (iii) the calcineurin-dependent interaction between dynamin I and syndapin I is essential for SV generation. We therefore propose that a calcineurin-dependent dephosphorylation cascade that requires both dynamin I GTPase and syndapin I lipid-deforming activity is essential for SV generation from bulk endosomes.


Subject(s)
Cytoskeletal Proteins/metabolism , Dynamins/metabolism , Endosomes/metabolism , Neurons/metabolism , Synaptic Vesicles/metabolism , Animals , Calcineurin/metabolism , Cells, Cultured , Endocytosis/physiology , Phosphorylation , Rats , Rats, Sprague-Dawley
17.
J Neurochem ; 151(1): 28-37, 2019 10.
Article in English | MEDLINE | ID: mdl-31216055

ABSTRACT

The two most abundant molecules on synaptic vesicles (SVs) are synaptophysin and synaptobrevin-II (sybII). SybII is essential for SV fusion, whereas synaptophysin is proposed to control the trafficking of sybII after SV fusion and its retrieval during endocytosis. Despite controlling key aspects of sybII packaging into SVs, the absence of synaptophysin results in negligible effects on neurotransmission. We hypothesised that this apparent absence of effect may be because of the abundance of sybII on SVs, with the impact of inefficient sybII retrieval only revealed during periods of repeated SV turnover. To test this hypothesis, we subjected primary cultures of synaptophysin knockout neurons to repeated trains of neuronal activity, while monitoring SV fusion events and levels of vesicular sybII. We identified a significant decrease in both the number of SV fusion events (monitored using the genetically encoded reporter vesicular glutamate transporter-pHluorin) and vesicular sybII levels (via both immunofluorescence and Western blotting) using this protocol. This revealed that synaptophysin is essential to sustain both parameters during periods of repetitive SV turnover. This was confirmed by the rescue of presynaptic performance by the expression of exogenous synaptophysin. Importantly, the expression of exogenous sybII also fully restored SV fusion events in synaptophysin knockout neurons. The ability of additional copies of sybII to fully rescue presynaptic performance in these knockout neurons suggests that the principal role of synaptophysin is to mediate the efficient retrieval of sybII to sustain neurotransmitter release.


Subject(s)
Neurons/metabolism , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Synaptophysin/metabolism , Vesicle-Associated Membrane Protein 2/metabolism , Animals , Cells, Cultured , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
18.
Brain ; 141(9): 2576-2591, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30107533

ABSTRACT

Synaptotagmin 1 (SYT1) is a critical mediator of fast, synchronous, calcium-dependent neurotransmitter release and also modulates synaptic vesicle endocytosis. This paper describes 11 patients with de novo heterozygous missense mutations in SYT1. All mutations alter highly conserved residues, and cluster in two regions of the SYT1 C2B domain at positions Met303 (M303K), Asp304 (D304G), Asp366 (D366E), Ile368 (I368T) and Asn371 (N371K). Phenotypic features include infantile hypotonia, congenital ophthalmic abnormalities, childhood-onset hyperkinetic movement disorders, motor stereotypies, and developmental delay varying in severity from moderate to profound. Behavioural characteristics include sleep disturbance and episodic agitation. Absence of epileptic seizures and normal orbitofrontal head circumference are important negative features. Structural MRI is unremarkable but EEG disturbance is universal, characterized by intermittent low frequency high amplitude oscillations. The functional impact of these five de novo SYT1 mutations has been assessed by expressing rat SYT1 protein containing the equivalent human variants in wild-type mouse primary hippocampal cultures. All mutant forms of SYT1 were expressed at levels approximately equal to endogenous wild-type protein, and correctly localized to nerve terminals at rest, except for SYT1M303K, which was expressed at a lower level and failed to localize at nerve terminals. Following stimulation, SYT1I368T and SYT1N371K relocalized to nerve terminals at least as efficiently as wild-type SYT1. However, SYT1D304G and SYT1D366E failed to relocalize to nerve terminals following stimulation, indicative of impairments in endocytic retrieval and trafficking of SYT1. In addition, the presence of SYT1 variants at nerve terminals induced a slowing of exocytic rate following sustained action potential stimulation. The extent of disturbance to synaptic vesicle kinetics is mirrored by the severity of the affected individuals' phenotypes, suggesting that the efficiency of SYT1-mediated neurotransmitter release is critical to cognitive development. In summary, de novo dominant SYT1 missense mutations are associated with a recognizable neurodevelopmental syndrome, and further cases can now be diagnosed based on clinical features, electrophysiological signature and mutation characteristics. Variation in phenotype severity may reflect mutation-specific impact on the diverse physiological functions of SYT1.


Subject(s)
Synaptotagmin I/genetics , Synaptotagmin I/physiology , Action Potentials , Adolescent , Animals , Calcium/metabolism , Child , Child, Preschool , Electrophysiological Phenomena , Endocytosis , Female , Humans , Intellectual Disability/genetics , Male , Mice , Mice, Inbred C57BL , Movement Disorders/genetics , Mutation, Missense/genetics , Neurodevelopmental Disorders/metabolism , Neurons/metabolism , Rats , Synaptic Transmission , Synaptic Vesicles/genetics , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology , Young Adult
19.
PLoS Genet ; 12(5): e1006033, 2016 05.
Article in English | MEDLINE | ID: mdl-27195491

ABSTRACT

Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic ß-cell dysfunction. Reduced mitochondrial function is thought to be central to ß-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in ß-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D ß-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D ß-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their ß-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of ß-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D ß-cells where we had little knowledge of which changes cause ß-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to ß-cell mitochondrial dysfunction in T2D.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Down Syndrome/genetics , Insulin/genetics , Intracellular Signaling Peptides and Proteins/genetics , Muscle Proteins/genetics , Adenosine Triphosphate/metabolism , Aneuploidy , Animals , Calcium-Binding Proteins , Chromosomes, Human, Pair 21/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Down Syndrome/metabolism , Down Syndrome/pathology , Gene Expression Regulation , Glucose/metabolism , Humans , Hyperglycemia/genetics , Hyperglycemia/metabolism , Hyperglycemia/pathology , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mitochondria/genetics , Mitochondria/pathology , Muscle Proteins/metabolism , Protein Biosynthesis/genetics
20.
Traffic ; 16(3): 229-40, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25346420

ABSTRACT

Central nerve terminals contain a small number of synaptic vesicles (SVs) that must sustain the fidelity of neurotransmission across a wide range of stimulation intensities. For this to be achieved, nerve terminals integrate a number of complementary endocytosis modes whose activation spans the breadth of these neuronal stimulation patterns. Two such modes are ultrafast endocytosis and activity-dependent bulk endocytosis, which are triggered by stimuli at either end of the physiological range. Both endocytosis modes generate endosomes directly from the nerve terminal plasma membrane, before the subsequent production of SVs from these structures. This review will discuss the current knowledge relating to the molecular mechanisms involved in the generation of SVs from nerve terminal endosomes, how this relates to other mechanisms of SV production and the functional role of such SVs.


Subject(s)
Central Nervous System/physiology , Endosomes/physiology , Nerve Endings/physiology , Synaptic Vesicles/physiology , Animals , Cell Membrane/physiology , Endocytosis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL