Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 51(6): 2501-2515, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36354007

ABSTRACT

RNA 2'O-methylation is a 'self' epitranscriptomic modification allowing discrimination between host and pathogen. Indeed, human immunodeficiency virus 1 (HIV-1) induces 2'O-methylation of its genome by recruiting the cellular FTSJ3 methyltransferase, thereby impairing detection by RIG-like receptors. Here, we show that RNA 2'O-methylations interfere with the antiviral activity of interferon-stimulated gene 20-kDa protein (ISG20). Biochemical experiments showed that ISG20-mediated degradation of 2'O-methylated RNA pauses two nucleotides upstream of and at the methylated residue. Structure-function analysis indicated that this inhibition is due to steric clash between ISG20 R53 and D90 residues and the 2'O-methylated nucleotide. We confirmed that hypomethylated HIV-1 genomes produced in FTSJ3-KO cells were more prone to in vitro degradation by ISG20 than those produced in cells expressing FTSJ3. Finally, we found that reverse-transcription of hypomethylated HIV-1 was impaired in T cells by interferon-induced ISG20, demonstrating the direct antagonist effect of 2'O-methylation on ISG20-mediated antiviral activity.


Despite highly effective antiretroviral therapies, the human immunodeficiency virus (HIV-1) remains a major public health threat. Its pathogenesis depends on its ability to establish a persistent infection in cells of the immune system. Our study highlights a new insight into how HIV-1 evades early restriction by the immune system. We showed that 2'O-methylation marks found inside HIV-1 RNA promote viral evasion from the antiviral action of the interferon-stimulated gene 20-kDa protein (ISG20), an innate immune restriction factor with a nuclease activity. By disrupting the level of 2'O-methylation of the HIV-1 genome, we demonstrated that ISG20 impairs the reverse transcription process of hypomethylated viruses, as a result of viral RNA decay.


Subject(s)
Exoribonucleases , HIV Infections , HIV-1 , RNA, Viral , Humans , Exoribonucleases/genetics , HIV Infections/virology , HIV-1/genetics , Host-Parasite Interactions , Interferons , Methylation , RNA Processing, Post-Transcriptional , RNA, Viral/metabolism
2.
EMBO Rep ; 23(5): e53820, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35239997

ABSTRACT

Engineering recombinant viruses is a pre-eminent tool for deciphering the biology of emerging viral pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the large size of coronavirus genomes renders the current reverse genetics methods challenging. Here, we describe a simple method based on "infectious subgenomic amplicons" (ISA) technology to generate recombinant infectious coronaviruses with no need for reconstruction of the complete genomic cDNA and apply this method to SARS-CoV-2 and also to the feline enteric coronavirus. In both cases we rescue wild-type viruses with biological characteristics similar to original strains. Specific mutations and fluorescent red reporter genes can be readily incorporated into the SARS-CoV-2 genome enabling the generation of a genomic variants and fluorescent reporter strains for in vivo experiments, serological diagnosis, and antiviral assays. The swiftness and simplicity of the ISA method has the potential to facilitate the advance of coronavirus reverse genetics studies, to explore the molecular biological properties of the SARS-CoV-2 variants, and to accelerate the development of effective therapeutic reagents.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , COVID-19/genetics , Cats , Reverse Genetics , SARS-CoV-2/genetics
3.
J Virol ; 96(8): e0012822, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35343766

ABSTRACT

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.


Subject(s)
COVID-19 , Furin , SARS-CoV-2 , Serine Endopeptidases , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/virology , Furin/metabolism , HeLa Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
4.
Nucleic Acids Res ; 49(3): 1737-1748, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33503246

ABSTRACT

The Ebola virus is a deadly human pathogen responsible for several outbreaks in Africa. Its genome encodes the 'large' L protein, an essential enzyme that has polymerase, capping and methyltransferase activities. The methyltransferase activity leads to RNA co-transcriptional modifications at the N7 position of the cap structure and at the 2'-O position of the first transcribed nucleotide. Unlike other Mononegavirales viruses, the Ebola virus methyltransferase also catalyses 2'-O-methylation of adenosines located within the RNA sequences. Herein, we report the crystal structure at 1.8 Å resolution of the Ebola virus methyltransferase domain bound to a fragment of a camelid single-chain antibody. We identified structural determinants and key amino acids specifically involved in the internal adenosine-2'-O-methylation from cap-related methylations. These results provide the first high resolution structure of an ebolavirus L protein domain, and the framework to investigate the effects of epitranscriptomic modifications and to design possible antiviral drugs against the Filoviridae family.


Subject(s)
Ebolavirus/enzymology , Methyltransferases/chemistry , Viral Proteins/chemistry , Catalytic Domain , Crystallography, X-Ray , Methyltransferases/genetics , Methyltransferases/metabolism , Models, Molecular , Mutation , Protein Conformation, alpha-Helical , Single-Domain Antibodies/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
5.
Virologie (Montrouge) ; 27(3): 35-49, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37476987

ABSTRACT

Enteroviruses (EVs) include many human pathogens of increasing public health concern. These EVs are often associated with mild clinical manifestations, but they can lead to serious complications such as encephalitis, meningitis, pneumonia, myocarditis or poliomyelitis. Despite significant advances, there is no approved antiviral therapy for the treatment of enterovirus infections. Due to the high genotypic diversity of EVs, molecules targeting highly conserved viral proteins may be considered for developing a pan-EV treatment. In this regard, the ATPase/Helicase 2C, which is a highly conserved non-structural protein among EVs, has essential functions for viral replication and is therefore an attractive antiviral target. Recent functional and structural studies on the 2C protein led to the identification of molecules showing ex vivo anti-EV activity and associated with resistance mutations on the coding sequence of the 2C protein. This review presents the current state of knowledge about the 2C protein from an antiviral target perspective and the mode of action of specific inhibitors for this therapeutic target.


Subject(s)
Enterovirus Infections , Enterovirus , Humans , Enterovirus/genetics , Enterovirus/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Enterovirus Infections/drug therapy , Antigens, Viral/metabolism , Antigens, Viral/pharmacology , Antigens, Viral/therapeutic use , Virus Replication
6.
Anal Chem ; 94(2): 975-984, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34971311

ABSTRACT

Serological tests are essential for the control and management of COVID-19 pandemic (diagnostics and surveillance, and epidemiological and immunity studies). We introduce a direct serological biosensor assay employing proprietary technology based on plasmonics, which offers rapid (<15 min) identification and quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in clinical samples, without signal amplification. The portable plasmonic device employs a custom-designed multiantigen (RBD peptide and N protein) sensor biochip and reaches detection limits in the low ng mL-1 range employing polyclonal antibodies. It has also been implemented employing the WHO-approved anti-SARS-CoV-2 immunoglobulin standard. A clinical validation with COVID-19 positive and negative samples (n = 120) demonstrates its excellent diagnostic sensitivity (99%) and specificity (100%). This positions our biosensor as an accurate and easy-to-use diagnostics tool for rapid and reliable COVID-19 serology to be employed both at laboratory and decentralized settings for the disease management and for the evaluation of immunological status during vaccination or treatment.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
7.
J Virol ; 95(15): e0077721, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34011549

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a reemerging arthropod-borne virus causing encephalitis in humans and domesticated animals. VEEV possesses a positive single-stranded RNA genome capped at its 5' end. The capping process is performed by the nonstructural protein nsP1, which bears methyl and guanylyltransferase activities. The capping reaction starts with the methylation of GTP. The generated m7GTP is complexed to the enzyme to form an m7GMP-nsP1 covalent intermediate. The m7GMP is then transferred onto the 5'-diphosphate end of the viral RNA. Here, we explore the specificities of the acceptor substrate in terms of length, RNA secondary structure, and/or sequence. Any diphosphate nucleosides but GDP can serve as acceptors of the m7GMP to yield m7GpppA, m7GpppC, or m7GpppU. We show that capping is more efficient on small RNA molecules, whereas RNAs longer than 130 nucleotides are barely capped by the enzyme. The structure and sequence of the short, conserved stem-loop, downstream to the cap, is an essential regulatory element for the capping process. IMPORTANCE The emergence, reemergence, and expansion of alphaviruses (genus of the family Togaviridae) are a serious public health and epizootic threat. Venezuelan equine encephalitis virus (VEEV) causes encephalitis in human and domesticated animals, with a mortality rate reaching 80% in horses. To date, no efficient vaccine or safe antivirals are available for human use. VEEV nonstructural protein 1 (nsP1) is the viral capping enzyme characteristic of the Alphavirus genus. nsP1 catalyzes methyltransferase and guanylyltransferase reactions, representing a good therapeutic target. In the present report, we provide insights into the molecular features and specificities of the cap acceptor substrate for the guanylylation reaction.


Subject(s)
Encephalitis Virus, Venezuelan Equine/genetics , RNA Caps/genetics , RNA, Viral/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics , Animals , Encephalomyelitis, Venezuelan Equine/pathology , Encephalomyelitis, Venezuelan Equine/virology , Horses , Humans , Methyltransferases/metabolism , Nucleic Acid Conformation , Nucleotidyltransferases/metabolism , Viral Nonstructural Proteins/genetics
8.
Molecules ; 27(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35268753

ABSTRACT

Bee venom (BV) is one of the most remarkable natural products that has been a subject of studies since ancient times. Recent studies have shown that Apis mellifera syriaca venom possesses antibacterial as well as cytotoxic effects on cancer cell lines. The venom contains a variety of bioactive molecules-mainly melittin (MEL) and phospholipase A2 (PLA2), as well as other compounds that are not well characterized. In this work, we continue the biological characterization of A. mellifera syriaca venom by testing its anticoagulant effect on human plasma using the prothrombin time (PT) test, as well as assessing its proteolytic activity. In addition, the cytotoxicity of the crude venom-and of its two main components, MEL and PLA2-was tested on HeLa cancer cell lines for the first time. The results obtained showed the capacity of A. mellifera syriaca venom to increase clotting time, thereby proving its anticoagulant effect. Moreover, the venom did not demonstrate a significant proteolytic activity unless administrated at concentrations ≥ 5 mg/mL. Finally, we showed that crude A. mellifera syriaca venom, along with MEL, exhibit a strong in vitro cytotoxic effect on HeLa cancer cell lines, even at low concentrations. In summary, our findings could serve as a basis for the development of new natural-based drug candidates in the therapeutic field.


Subject(s)
Melitten
9.
J Virol ; 94(12)2020 06 01.
Article in English | MEDLINE | ID: mdl-32269120

ABSTRACT

The large (L) protein of Ebola virus is a key protein for virus replication. Its N-terminal region harbors the RNA-dependent RNA polymerase activity, and its C terminus contains a cap assembling line composed of a capping domain and a methyltransferase domain (MTase) followed by a C-terminal domain (CTD) of unknown function. The L protein MTase catalyzes methylation at the 2'-O and N-7 positions of the cap structures. In addition, the MTase of Ebola virus can induce cap-independent internal adenosine 2'-O-methylation. In this work, we investigated the CTD role in the regulation of the cap-dependent and cap-independent MTase activities of the L protein. We found that the CTD, which is enriched in basic amino acids, plays a key role in RNA binding and in turn regulates the different MTase activities. We demonstrated that the mutation of CTD residues modulates specifically the different MTase activities. Altogether, our results highlight the pivotal role of the L protein CTD in the control of viral RNA methylation, which is critical for Ebola virus replication and escape from the innate response in infected cells.IMPORTANCE Ebola virus infects human and nonhuman primates, causing severe infections that are often fatal. The epidemics, in West and Central Africa, emphasize the urgent need to develop antiviral therapies. The Ebola virus large protein (L), which is the central protein for viral RNA replication/transcription, harbors a methyltransferase domain followed by a C-terminal domain of unknown function. We show that the C-terminal domain regulates the L protein methyltransferase activities and consequently participates in viral replication and escape of the host innate immunity.


Subject(s)
Ebolavirus/genetics , Methyltransferases/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Ebolavirus/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Methylation , Methyltransferases/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Interaction Domains and Motifs , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Viral Nonstructural Proteins/metabolism , Virus Replication
10.
Mult Scler ; 27(2): 320-323, 2021 02.
Article in English | MEDLINE | ID: mdl-32584194

ABSTRACT

We report a fatal case of coxsackievirus B4 chronic infection in a 30-year-old woman with a diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disorder controlled by rituximab monotherapy for 3 years. Initially presenting as self-limited meningitis, the infection remained silent for 8 months before the sudden onset of fulminant myocarditis. Analysis of the complete genome showed that the same virus was responsible for both episodes.


Subject(s)
Enterovirus Infections , Enterovirus , Neuromyelitis Optica , Adult , Autoantibodies , Central Nervous System , Enterovirus Infections/drug therapy , Female , Humans , Myelin-Oligodendrocyte Glycoprotein
11.
Rev Med Virol ; 30(6): 1-10, 2020 11.
Article in English | MEDLINE | ID: mdl-32779326

ABSTRACT

The health emergency caused by the recent Covid-19 pandemic highlights the need to identify effective treatments against the virus causing this disease (SARS-CoV-2). The first clinical trials have been testing repurposed drugs that show promising anti-SARS-CoV-2 effects in cultured cells. Although more than 2400 clinical trials are already under way, the actual number of tested compounds is still limited to approximately 20, alone or in combination. In addition, knowledge on their mode of action (MoA) is currently insufficient. Their first results reveal some inconsistencies and contradictory results and suggest that cohort size and quality of the control arm are two key issues for obtaining rigorous and conclusive results. Moreover, the observed discrepancies might also result from differences in the clinical inclusion criteria, including the possibility of early treatment that may be essential for therapy efficacy in patients with Covid-19. Importantly, efforts should also be made to test new compounds with a documented MoA against SARS-CoV-2 in clinical trials. Successful treatment will probably be based on multitherapies with antiviral compounds that target different steps of the virus life cycle. Moreover, a multidisciplinary approach that combines artificial intelligence, compound docking, and robust in vitro and in vivo assays will accelerate the development of new antiviral molecules. Finally, large retrospective studies on hospitalized patients are needed to evaluate the different treatments with robust statistical tools and to identify the best treatment for each Covid-19 stage. This review describes different candidate antiviral strategies for Covid-19, by focusing on their mechanism of action.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Combined Modality Therapy , Disease Management , Disease Susceptibility , Drug Development , Drug Repositioning , Host-Pathogen Interactions , Humans , Treatment Outcome
12.
Molecules ; 26(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919706

ABSTRACT

Colon carcinogenesis is ranked second globally among human diseases after cardiovascular failures. Bee venom (BV) has been shown to possess in vitro anticancer effects against several types of cancer cells. The two main biopeptides of Apis mellifera BV, namely, melittin (MEL) and phospholipase A2 (PLA2), are suspected to be the biomolecules responsible for the anticancer activity. The present work aims to evaluate the cytotoxic effect of the A. mellifera venom on human colon carcinoma cells (HCT116), and to assess the synergistic effect of MEL and PLA2 on these cells. After analyzing, through high-pressure liquid chromatography, the proportions of MEL and PLA2 on BV, we have established a cell viability assay to evaluate the effect of BV, MEL, PLA2, and a mixture of MEL and PLA2 on the HCT116 cells. Results obtained showed a strong cytotoxicity effect induced by the A. mellifera venom and to a lower extent MEL or PLA2 alone. Remarkably, when MEL and PLA2 were added together, their cytotoxic effect was greatly improved, suggesting a synergistic activity on HCT116 cells. These findings confirm the cytotoxic effect of the A. mellifera venom and highlight the presence of synergistic potential activities between MEL and PLA2, possibly inducing membrane disruption of HCT116 cancer cells. Altogether, these results could serve as a basis for the development of new anticancer treatments.


Subject(s)
Bees/chemistry , Colonic Neoplasms/pathology , Melitten/pharmacology , Phospholipases A2/pharmacology , Animals , Cell Death/drug effects , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Drug Synergism , HCT116 Cells , Humans
13.
Molecules ; 26(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803417

ABSTRACT

A series of hitherto unknown (1,4-disubstituted-1,2,3-triazol)-(E)-2-methyl-but-2-enyl nucleosides phosphonate prodrugs bearing 4-substituted-1,2,3-triazoles were prepared in a straight approach through an olefin acyclic cross metathesis as the key synthetic step. All novel compounds were evaluated for their antiviral activities against HBV, HIV and SARS-CoV-2. Among these molecules, only compound 15j, a hexadecyloxypropyl (HDP)/(isopropyloxycarbonyl-oxymethyl)-ester (POC) prodrug, showed activity against HBV in Huh7 cell cultures with 62% inhibition at 10 µM, without significant cytotoxicity (IC50 = 66.4 µM in HepG2 cells, IC50 = 43.1 µM in HepG2 cells) at 10 µM.


Subject(s)
Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Azo Compounds/chemistry , Nucleosides/chemistry , Organophosphonates/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Alkenes/chemistry , Animals , Cell Line, Tumor , Chlorocebus aethiops , HIV-1/drug effects , Hepatitis B virus/drug effects , Humans , Magnetic Resonance Spectroscopy , Methylation , SARS-CoV-2/drug effects , Structure-Activity Relationship , Triazoles/chemistry , Vero Cells
14.
Emerg Infect Dis ; 26(8): 1944-1946, 2020 08.
Article in English | MEDLINE | ID: mdl-32433015
15.
Article in English | MEDLINE | ID: mdl-32340991

ABSTRACT

Despite the worldwide reemergence of the chikungunya virus (CHIKV) and the high morbidity associated with CHIKV infections, there is no approved vaccine or antiviral treatment available. Here, we aimed to identify the target of a novel class of CHIKV inhibitors, i.e., the CHVB series. CHVB compounds inhibit the in vitro replication of CHIKV isolates with 50% effective concentrations in the low-micromolar range. A CHVB-resistant variant (CHVBres) was selected that carried two mutations in the gene encoding nsP1 (responsible for viral RNA capping), one mutation in nsP2, and one mutation in nsP3. Reverse genetics studies demonstrated that both nsP1 mutations were necessary and sufficient to achieve ∼18-fold resistance, suggesting that CHVB targets viral mRNA capping. Interestingly, CHVBres was cross-resistant to the previously described CHIKV capping inhibitors from the MADTP series, suggesting they share a similar mechanism of action. In enzymatic assays, CHVB inhibited the methyltransferase and guanylyltransferase activities of alphavirus nsP1 proteins. To conclude, we identified a class of CHIKV inhibitors that targets the viral capping machinery. The potent anti-CHIKV activity makes this chemical scaffold a potential candidate for CHIKV drug development.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Antiviral Agents/pharmacology , Chikungunya Fever/drug therapy , Chikungunya virus/genetics , Chlorocebus aethiops , Vero Cells , Viral Nonstructural Proteins , Virus Replication
16.
Bioorg Med Chem ; 28(22): 115713, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33128910

ABSTRACT

Flaviviruses, such as Dengue (DENV) and Zika (ZIKV) viruses, represent a severe health burden. There are currently no FDA-approved treatments, and vaccines against most flaviviruses are still lacking. We have developed several flexible analogues ("fleximers") of the FDA-approved nucleoside Acyclovir that exhibit activity against various RNA viruses, demonstrating their broad-spectrum potential. The current study reports activity against DENV and Yellow Fever Virus (YFV), particularly for compound 1. Studies to elucidate the mechanism of action suggest the flex-analogue triphosphates, especially 1-TP, inhibit DENV and ZIKV methyltransferases, and a secondary, albeit weak, effect on the DENV RNA-dependent RNA polymerase was observed at high concentrations. The results of these studies are reported herein.


Subject(s)
Antiviral Agents/pharmacology , Flavivirus/drug effects , Nucleosides/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/chemistry , Structure-Activity Relationship , Virus Replication/drug effects
17.
Nucleic Acids Res ; 46(15): 7902-7912, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30192980

ABSTRACT

Mononegaviruses, such as Ebola virus, encode an L (large) protein that bears all the catalytic activities for replication/transcription and RNA capping. The C-terminal conserved region VI (CRVI) of L protein contains a K-D-K-E catalytic tetrad typical for 2'O methyltransferases (MTase). In mononegaviruses, cap-MTase activities have been involved in the 2'O methylation and N7 methylation of the RNA cap structure. These activities play a critical role in the viral life cycle as N7 methylation ensures efficient viral mRNA translation and 2'O methylation hampers the detection of viral RNA by the host innate immunity. The functional characterization of the MTase+CTD domain of Sudan ebolavirus (SUDV) revealed cap-independent methyltransferase activities targeting internal adenosine residues. Besides this, the MTase+CTD also methylates, the N7 position of the cap guanosine and the 2'O position of the n1 guanosine provided that the RNA is sufficiently long. Altogether, these results suggest that the filovirus MTases evolved towards a dual activity with distinct substrate specificities. Whereas it has been well established that cap-dependent methylations promote protein translation and help to mimic host RNA, the characterization of an original cap-independent methylation opens new research opportunities to elucidate the role of RNA internal methylations in the viral replication.


Subject(s)
Adenosine/metabolism , Ebolavirus/genetics , Gene Expression Regulation, Viral , Methyltransferases/genetics , RNA, Viral/genetics , Viral Nonstructural Proteins/genetics , Adenosine/genetics , Amino Acid Motifs , Cloning, Molecular , Ebolavirus/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Guanosine/genetics , Guanosine/metabolism , Methylation , Methyltransferases/metabolism , Protein Domains , RNA Caps , RNA, Viral/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
18.
J Struct Biol ; 206(1): 119-127, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30825649

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus which can be involved in several central nervous system disorders such as encephalitis and meningitis. The VEEV genome codes for 4 non-structural proteins (nsP), of which nsP3 contains a Macro domain. Macro domains (MD) can be found as stand-alone proteins or embedded within larger proteins in viruses, bacteria and eukaryotes. Their most common feature is the binding of ADP-ribose (ADPr), while several macro domains act as ribosylation writers, erasers or readers. Alphavirus MD erase ribosylation but their precise contribution in viral replication is still under investigation. NMR-driven titration experiments of ADPr in solution with the VEEV macro domain (in apo- and complex state) show that it adopts a suitable conformation for ADPr binding. Specific experiments indicate that the flexibility of the loops ß5-α3 and α3-ß6 is critical for formation of the complex and assists a wrapping mechanism for ADPr binding. Furthermore, along with this sequence of events, the VEEV MD undergoes a conformational exchange process between the apo state and a low-populated "dark" conformational state.


Subject(s)
Adenosine Diphosphate Ribose/chemistry , Encephalitis Virus, Venezuelan Equine/metabolism , Molecular Dynamics Simulation , Protein Domains , Viral Nonstructural Proteins/chemistry , Adenosine Diphosphate Ribose/metabolism , Animals , Encephalitis Virus, Venezuelan Equine/genetics , Horses , Humans , Magnetic Resonance Spectroscopy , Molecular Conformation , Protein Binding , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication
19.
J Virol ; 91(5)2017 03 01.
Article in English | MEDLINE | ID: mdl-28031359

ABSTRACT

The Flavivirus Zika virus (ZIKV) is the causal agent of neurological disorders like microcephaly in newborns or Guillain-Barre syndrome. Its NS5 protein embeds a methyltransferase (MTase) domain involved in the formation of the viral mRNA cap. We investigated the structural and functional properties of the ZIKV MTase. We show that the ZIKV MTase can methylate RNA cap structures at the N-7 position of the cap, and at the 2'-O position on the ribose of the first nucleotide, yielding a cap-1 structure. In addition, the ZIKV MTase methylates the ribose 2'-O position of internal adenosines of RNA substrates. The crystal structure of the ZIKV MTase determined at a 2.01-Å resolution reveals a crystallographic homodimer. One chain is bound to the methyl donor (S-adenosyl-l-methionine [SAM]) and shows a high structural similarity to the dengue virus (DENV) MTase. The second chain lacks SAM and displays conformational changes in the αX α-helix contributing to the SAM and RNA binding. These conformational modifications reveal a possible molecular mechanism of the enzymatic turnover involving a conserved Ser/Arg motif. In the second chain, the SAM binding site accommodates a sulfate close to a glycerol that could serve as a basis for structure-based drug design. In addition, compounds known to inhibit the DENV MTase show similar inhibition potency on the ZIKV MTase. Altogether these results contribute to a better understanding of the ZIKV MTase, a central player in viral replication and host innate immune response, and lay the basis for the development of potential antiviral drugs.IMPORTANCE The Zika virus (ZIKV) is associated with microcephaly in newborns, and other neurological disorders such as Guillain-Barre syndrome. It is urgent to develop antiviral strategies inhibiting the viral replication. The ZIKV NS5 embeds a methyltransferase involved in the viral mRNA capping process, which is essential for viral replication and control of virus detection by innate immune mechanisms. We demonstrate that the ZIKV methyltransferase methylates the mRNA cap and adenosines located in RNA sequences. The structure of ZIKV methyltransferase shows high structural similarities to the dengue virus methyltransferase, but conformational specificities highlight the role of a conserved Ser/Arg motif, which participates in RNA and SAM recognition during the reaction turnover. In addition, the SAM binding site accommodates a sulfate and a glycerol, offering structural information to initiate structure-based drug design. Altogether, these results contribute to a better understanding of the Flavivirus methyltransferases, which are central players in the virus replication.


Subject(s)
Antiviral Agents/chemistry , Methyltransferases/chemistry , Viral Nonstructural Proteins/chemistry , Zika Virus/enzymology , Allosteric Site , Catalytic Domain , Crystallography, X-Ray , Drug Design , Escherichia coli , Hydrogen Bonding , Methyltransferases/biosynthesis , Models, Molecular , Protein Binding , Viral Nonstructural Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL