Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 630(8018): 884-890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926613

ABSTRACT

Small-scale turbulent mixing drives the upwelling of deep water masses in the abyssal ocean as part of the global overturning circulation1. However, the processes leading to mixing and the pathways through which this upwelling occurs remain insufficiently understood. Recent observational and theoretical work2-5 has suggested that deep-water upwelling may occur along the ocean's sloping seafloor; however, evidence has, so far, been indirect. Here we show vigorous near-bottom upwelling across isopycnals at a rate of the order of 100 metres per day, coupled with adiabatic exchange of near-boundary and interior fluid. These observations were made using a dye released close to the seafloor within a sloping submarine canyon, and they provide direct evidence of strong, bottom-focused diapycnal upwelling in the deep ocean. This supports previous suggestions that mixing at topographic features, such as canyons, leads to globally significant upwelling3,6-8. The upwelling rates observed were approximately 10,000 times higher than the global average value required for approximately 30 × 106 m3 s-1 of net upwelling globally9.

2.
Philos Trans A Math Phys Eng Sci ; 376(2122)2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29760110

ABSTRACT

Palmer Deep canyon along the central West Antarctic Peninsula is known to have higher phytoplankton biomass than the surrounding non-canyon regions, but the circulation mechanisms that transport and locally concentrate phytoplankton and Antarctic krill, potentially increasing prey availability to upper-trophic-level predators such as penguins and cetaceans, are currently unknown. We deployed a three-site high-frequency radar network that provided hourly surface circulation maps over the Palmer Deep hotspot. A series of particle release experiments were used to estimate surface residence time and connectivity across the canyon. The majority of residence times fell between 1.0 and 3.5 days, with a mean of 2 days and a maximum of 5 days. We found a highly significant negative relationship between wind speed and residence time. Our residence time analysis indicates that the elevated phytoplankton biomass over the central canyon is transported into and out of the hotspot on time scales much shorter than the observed phytoplankton growth rate, suggesting that the canyon may not act as an incubator of phytoplankton productivity as previously suggested. It may instead serve more as a conveyor belt of phytoplankton biomass produced elsewhere, continually replenishing the phytoplankton biomass for the local Antarctic krill community, which in turn supports numerous top predators.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'.

3.
Nat Commun ; 12(1): 2418, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893280

ABSTRACT

Unprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.

4.
Oncol Lett ; 13(1): 497-505, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28123588

ABSTRACT

Y-box-binding protein 1 (YB-1) is a regulatory protein that is associated with drug resistance and relapse in solid tumors. As YB-1 mediates some of its activity through growth factor receptor signaling dysregulation, the present study compared the expression of YB-1 and interleukin 7 (IL-7) receptor α (IL-7Rα) in pediatric B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) and normal BCP cells. The expression levels of IL-7Rα and YB-1 were higher in relapsed vs. diagnostic samples of primary BCP ALL; however, co-expression was also observed in a minor BCP cell population in samples from healthy donors. Functional crosstalk between YB-1 and IL-7R was detected: Overexpression of YB-1 increased surface levels of IL-7R in B cells, and the stimulation of BCP ALL cell lines and primary samples by IL-7 activated YB-1 by phosphorylation at S102 in a phosphatidylinositol 3-kinase-independent and MEK1/2-dependent manner. Targeted knockdown of YB-1 reduced IL-7-mediated protection against rapamycin, and an inhibitor of MEK1/2 potentiated rapamycin-mediated killing in the presence of IL-7. These data establish a novel link between two well-characterized pro-survival factors in acute leukemia, and suggest that YB-1 inhibition may represent a novel therapeutic strategy for increasing sensitivity to chemotherapy in patients with refractory acute B-cell leukemia.

5.
Oncotarget ; 4(2): 329-45, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23593654

ABSTRACT

Triple-negative breast cancers (TNBC) are notoriously difficult to treat because they lack hormone receptors and have limited targeted therapies. Recently, we demonstrated that p90 ribosomal S6 kinase (RSK) is essential for TNBC growth and survival indicating it as a target for therapeutic development. RSK phosphorylates Y-box binding protein-1 (YB-1), an oncogenic transcription/translation factor, highly expressed in TNBC (~70% of cases) and associated with poor prognosis, drug resistance and tumor initiation. YB-1 regulates the tumor-initiating cell markers, CD44 and CD49f however its role in Notch signaling has not been explored. We sought to identify novel chemical entities with RSK inhibitory activity. The Prestwick Chemical Library of 1120 off-patent drugs was screened for RSK inhibitors using both in vitro kinase assays and molecular docking. The lead candidate, luteolin, inhibited RSK1 and RSK2 kinase activity and suppressed growth in TNBC, including TIC-enriched populations. Combining luteolin with paclitaxel increased cell death and unlike chemotherapy alone, did not enrich for CD44(+) cells. Luteolin's efficacy against drug-resistant cells was further indicated in the primary x43 cell line, where it suppressed monolayer growth and mammosphere formation. We next endeavored to understand how the inhibition of RSK/YB-1 signaling by luteolin elicited an effect on TIC-enriched populations. ChIP-on-ChIP experiments in SUM149 cells revealed a 12-fold enrichment of YB-1 binding to the Notch4 promoter. We chose to pursue this because there are several reports indicating that Notch4 maintains cells in an undifferentiated, TIC state. Herein we report that silencing YB-1 with siRNA decreased Notch4 mRNA. Conversely, transient expression of Flag:YB-1(WT) or the constitutively active mutant Flag:YB-1(D102) increased Notch4 mRNA. The levels of Notch4 transcript and the abundance of the Notch4 intracellular domain (N4ICD) correlated with activation of P-RSK(S221/7) and P-YB-1(S102) in a panel of TNBC cell lines. Silencing YB-1 or RSK reduced Notch4 mRNA and this corresponded with loss of N4ICD. Likewise, the RSK inhibitors, luteolin and BI-D1870, suppressed P-YB-1(S102) and thereby reduced Notch4. In conclusion, inhibiting the RSK/YB-1 pathway with luteolin is a novel approach to blocking Notch4 signaling and as such provides a means of inhibiting TICs.


Subject(s)
Breast Neoplasms/drug therapy , Luteolin/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Receptors, Notch/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Y-Box-Binding Protein 1/antagonists & inhibitors , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Models, Molecular , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor, Notch4 , Receptors, Notch/genetics , Receptors, Notch/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Y-Box-Binding Protein 1/genetics , Y-Box-Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL