Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Bioorg Med Chem Lett ; 73: 128884, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35835377

ABSTRACT

11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues, resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11ß-HSD1, particularly in adipose tissues, has been associated with a variety of ailments including metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11ß-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a 3-point pharmacophore for 11ß-HSD1 that was utilized to design a 2-spiroproline derivative as a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of several leads, such as compounds 39 and 51. Importantly, deleterious hERG inhibition and pregnane X receptor induction were mitigated by the introduction of a 4-hydroxyl group to the proline ring system.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydrocortisone/metabolism
2.
Bioorg Med Chem Lett ; 69: 128782, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35537608

ABSTRACT

11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11ß-HSD1, particularly in adipose tissues, has been associated with metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11ß-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a three-point pharmacophore for 11ß-HSD1 that was utilized to design a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of INCB13739. Clinical evaluation of INCB13739 confirmed for the first time that tissue-specific inhibition of 11ß-HSD1 in patients with type 2 diabetes mellitus was efficacious in controlling glucose levels and reducing cardiovascular risk factors.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Enzyme Inhibitors/pharmacology , Humans , Hydrocortisone/metabolism , Metabolic Syndrome/metabolism
3.
Clin Immunol ; 218: 108517, 2020 09.
Article in English | MEDLINE | ID: mdl-32585295

ABSTRACT

Approximately 15% of patients with coronavirus disease 2019 (COVID-19) experience severe disease, and 5% progress to critical stage that can result in rapid death. No vaccines or antiviral treatments have yet proven effective against COVID-19. Patients with severe COVID-19 experience elevated plasma levels of pro-inflammatory cytokines, which can result in cytokine storm, followed by massive immune cell infiltration into the lungs leading to alveolar damage, decreased lung function, and rapid progression to death. As many of the elevated cytokines signal through Janus kinase (JAK)1/JAK2, inhibition of these pathways with ruxolitinib has the potential to mitigate the COVID-19-associated cytokine storm and reduce mortality. This is supported by preclinical and clinical data from other diseases with hyperinflammatory states, where ruxolitinib has been shown to reduce cytokine levels and improve outcomes. The urgent need for treatments for patients with severe disease support expedited investigation of ruxolitinib for patients with COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/prevention & control , Cytokines/antagonists & inhibitors , Pneumonia, Viral/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Severe Acute Respiratory Syndrome/prevention & control , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Cytokines/genetics , Cytokines/immunology , Drug Dosage Calculations , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/genetics , Janus Kinase 1/immunology , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Janus Kinase 2/immunology , Lung/drug effects , Lung/immunology , Lung/pathology , Lung/virology , Nitriles , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/pharmacokinetics , Pyrimidines , SARS-CoV-2 , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index , Signal Transduction/drug effects
4.
J Pharmacol Exp Ther ; 374(1): 211-222, 2020 07.
Article in English | MEDLINE | ID: mdl-32345620

ABSTRACT

The clinical use of first-generation phosphoinositide 3-kinase (PI3K)δ inhibitors in B-cell malignancies is hampered by hepatotoxicity, requiring dose reduction, treatment interruption, and/or discontinuation of therapy. In addition, potential molecular mechanisms by which resistance to this class of drugs occurs have not been investigated. Parsaclisib (INCB050465) is a potent and selective next-generation PI3Kδ inhibitor that differs in structure from first-generation PI3Kδ inhibitors and has shown encouraging anti-B-cell tumor activity and reduced hepatotoxicity in phase 1/2 clinical studies. Here, we present preclinical data demonstrating parsaclisib as a potent inhibitor of PI3Kδ with over 1000-fold selectivity against other class 1 PI3K isozymes. Parsaclisib directly blocks PI3K signaling-mediated cell proliferation in B-cell lines in vitro and in vivo and indirectly controls tumor growth by lessening immunosuppression through regulatory T-cell inhibition in a syngeneic lymphoma model. Diffuse large B-cell lymphoma cell lines overexpressing MYC were insensitive to proliferation blockade via PI3Kδ signaling inhibition by parsaclisib, but their proliferative activities were reduced by suppression of MYC gene transcription. Molecular structure analysis of the first- and next-generation PI3Kδ inhibitors combined with clinical observation suggests that hepatotoxicity seen with the first-generation inhibitors could result from a structure-related off-target effect. Parsaclisib is currently being evaluated in multiple phase 2 clinical trials as a therapy against various hematologic malignancies of B-cell origin (NCT03126019, NCT02998476, NCT03235544, NCT03144674, and NCT02018861). SIGNIFICANCE STATEMENT: The preclinical properties described here provide the mechanism of action and support clinical investigations of parsaclisib as a therapy for B-cell malignancies. MYC overexpression was identified as a resistance mechanism to parsaclisib in DLBCL cells, which may be useful in guiding further translational studies for the selection of patients with DLBCL who might benefit from PI3Kδ inhibitor treatment in future trials. Hepatotoxicity associated with first-generation PI3Kδ inhibitors may be an off-target effect of that class of compounds.


Subject(s)
Liver/drug effects , Lymphoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/adverse effects , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Pyrazoles/adverse effects , Pyrazoles/pharmacology , Pyrimidines/adverse effects , Pyrimidines/pharmacology , Pyrrolidines/adverse effects , Pyrrolidines/pharmacology , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Immunologic Factors/adverse effects , Immunologic Factors/pharmacology , Mice , Xenograft Model Antitumor Assays
5.
J Pharmacol Exp Ther ; 364(1): 120-130, 2018 01.
Article in English | MEDLINE | ID: mdl-29127109

ABSTRACT

Phosphatidylinositol 3-kinase delta (PI3Kδ) is a critical signaling molecule in B cells and is considered a target for development of therapies against various B cell malignancies. INCB040093 is a novel PI3Kδ small-molecule inhibitor and has demonstrated promising efficacy in patients with Hodgkin's lymphoma in clinical studies. In this study, we disclose the chemical structure and the preclinical activity of the compound. In biochemical assays, INCB040093 potently inhibits the PI3Kδ kinase, with 74- to >900-fold selectivity against other PI3K family members. In vitro and ex vivo studies using primary B cells, cell lines from B cell malignancies, and human whole blood show that INCB040093 inhibits PI3Kδ-mediated functions, including cell signaling and proliferation. INCB040093 has no significant effect on the growth of nonlymphoid cell lines and was less potent in assays that measure human T and natural killer cell proliferation and neutrophil and monocyte functions, suggesting that the impact of INCB040093 on the human immune system will likely be restricted to B cells. INCB040093 inhibits the production of macrophage-inflammatory protein-1ß (MIP-1beta) and tumor necrosis factor-ß (TNF-beta) from a B cell line, suggesting a potential effect on the tumor microenvironment. In vivo, INCB040093 demonstrates single-agent activity in inhibiting tumor growth and potentiates the antitumor growth effect of the clinically relevant chemotherapeutic agent, bendamustine, in the Pfeiffer cell xenograft model of non-Hodgkin's lymphoma. INCB040093 has a favorable exposure profile in rats and an acceptable safety margin in rats and dogs. Taken together, data presented in this report support the potential utility of orally administered INCB040093 in the treatment of B cell malignancies.


Subject(s)
Antineoplastic Agents/pharmacology , Lymphoma, Non-Hodgkin/drug therapy , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Cell Line , Cell Proliferation/drug effects , Chemokine CCL4/metabolism , Dogs , Female , Humans , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Lymphoma, Non-Hodgkin/metabolism , Male , Mice , Mice, SCID , Monocytes/drug effects , Monocytes/metabolism , Neoplasms/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Rats , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
6.
J Med Chem ; 67(4): 3112-3126, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38325398

ABSTRACT

CDK2 is a critical regulator of the cell cycle. For a variety of human cancers, the dysregulation of CDK2/cyclin E1 can lead to tumor growth and proliferation. Historically, early efforts to develop CDK2 inhibitors with clinical applications proved unsuccessful due to challenges in achieving selectivity over off-target CDK isoforms with associated toxicity. In this report, we describe the discovery of (4-pyrazolyl)-2-aminopyrimidines as a potent class of CDK2 inhibitors that display selectivity over CDKs 1, 4, 6, 7, and 9. SAR studies led to the identification of compound 17, a kinase selective and highly potent CDK2 inhibitor (IC50 = 0.29 nM). The evaluation of 17 in CCNE1-amplified mouse models shows the pharmacodynamic inhibition of CDK2, measured by reduced Rb phosphorylation, and antitumor activity.


Subject(s)
Cyclin-Dependent Kinases , Neoplasms , Animals , Humans , Mice , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinase 4/metabolism , Phosphorylation , Pyrimidines/pharmacology , Pyrazoles/chemistry , Pyrazoles/metabolism , Pyrazoles/pharmacology
7.
ACS Med Chem Lett ; 14(1): 5-10, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36655125

ABSTRACT

In spite of the great success of immune checkpoint inhibitors in immune-oncology therapy, an urgent need still exists to identify alternative approaches to broaden the scope of therapeutic coverage. Hematopoietic progenitor kinase 1 (HPK1), also known as MAP4K1, functions as a negative regulator of activation signals generated by the T cell antigen receptor. Herein we report the discovery of novel pyrazolopyridine derivatives as selective inhibitors of HPK1. The structure-activity relationship campaign led to the discovery of compound 16, which has shown promising enzymatic and cellular potency with encouraging kinome selectivity. The outstanding pharmacokinetic profiles of 16 in rats and monkeys supported further evaluations of its efficacy and safety in preclinical models.

8.
ACS Med Chem Lett ; 14(1): 116-122, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36655134

ABSTRACT

Herein we report the discovery of a novel biaryl amide series as selective inhibitors of hematopoietic protein kinase 1 (HPK1). Structure-activity relationship development, aided by molecular modeling, identified indazole 5b as a core for further exploration because of its outstanding enzymatic and cellular potency coupled with encouraging kinome selectivity. Late-stage manipulation of the right-hand aryl and amine moieties surmounted issues of selectivity over TRKA, MAP4K2, and STK4 as well as generating compounds with balanced in vitro ADME profiles and promising pharmacokinetics.

9.
ACS Med Chem Lett ; 14(3): 312-318, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36923909

ABSTRACT

Fibroblast growth factor receptors (FGFRs) are transmembrane receptor tyrosine kinases that regulate multiple physiological processes. Aberrant activation of FGFR2 and FGFR3 has been linked to the pathogenesis of many tumor types, including cholangiocarcinoma and bladder cancer. Current therapies targeting the FGFR2/3 pathway exploiting small-molecule kinase inhibitors are associated with adverse events due to undesirable inhibition of FGFR1 and FGFR4. Isoform-specific FGFR2 and FGFR3 inhibitors that spare FGFR1 and FGFR4 could offer a favorable toxicity profile and improved therapeutic window to current treatments. Herein we disclose the discovery of dual FGFR2/FGFR3 inhibitors exploiting scaffold repurposing of a previously reported ALK2 tool compound. Structure-based drug design and structure-activity relationship studies were employed to identify selective and orally bioavailable inhibitors with equipotent activity toward wild-type kinases and a clinically observed gatekeeper mutant.

10.
Blood ; 115(15): 3109-17, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20130243

ABSTRACT

Constitutive JAK2 activation in hematopoietic cells by the JAK2V617F mutation recapitulates myeloproliferative neoplasm (MPN) phenotypes in mice, establishing JAK2 inhibition as a potential therapeutic strategy. Although most polycythemia vera patients carry the JAK2V617F mutation, half of those with essential thrombocythemia or primary myelofibrosis do not, suggesting alternative mechanisms for constitutive JAK-STAT signaling in MPNs. Most patients with primary myelofibrosis have elevated levels of JAK-dependent proinflammatory cytokines (eg, interleukin-6) consistent with our observation of JAK1 hyperactivation. Accordingly, we evaluated the effectiveness of selective JAK1/2 inhibition in experimental models relevant to MPNs and report on the effects of INCB018424, the first potent, selective, oral JAK1/JAK2 inhibitor to enter the clinic. INCB018424 inhibited interleukin-6 signaling (50% inhibitory concentration [IC(50)] = 281nM), and proliferation of JAK2V617F(+) Ba/F3 cells (IC(50) = 127nM). In primary cultures, INCB018424 preferentially suppressed erythroid progenitor colony formation from JAK2V617F(+) polycythemia vera patients (IC(50) = 67nM) versus healthy donors (IC(50) > 400nM). In a mouse model of JAK2V617F(+) MPN, oral INCB018424 markedly reduced splenomegaly and circulating levels of inflammatory cytokines, and preferentially eliminated neoplastic cells, resulting in significantly prolonged survival without myelosuppressive or immunosuppressive effects. Preliminary clinical results support these preclinical data and establish INCB018424 as a promising oral agent for the treatment of MPNs.


Subject(s)
Janus Kinases/antagonists & inhibitors , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/enzymology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/therapeutic use , Amino Acid Substitution/genetics , Animals , Apoptosis/drug effects , Blood Cell Count , Cell Proliferation/drug effects , Cell Survival/drug effects , Colony-Forming Units Assay , Cytokines/blood , Disease Models, Animal , Drug Screening Assays, Antitumor , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Humans , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/genetics , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Mice , Myeloproliferative Disorders/blood , Myeloproliferative Disorders/pathology , Nitriles , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrimidines , Signal Transduction/drug effects , Spleen/drug effects , Spleen/pathology , Treatment Outcome
11.
J Immunol ; 184(9): 5298-307, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20363976

ABSTRACT

Inhibiting signal transduction induced by inflammatory cytokines offers a new approach for the treatment of autoimmune diseases such as rheumatoid arthritis. Kinase inhibitors have shown promising oral disease-modifying antirheumatic drug potential with efficacy similar to anti-TNF biologics. Direct and indirect inhibition of the JAKs, with small molecule inhibitors like CP-690,550 and INCB018424 or neutralizing Abs, such as the anti-IL6 receptor Ab tocilizumab, have demonstrated rapid and sustained improvement in clinical measures of disease, consistent with their respective preclinical experiments. Therefore, it is of interest to identify optimized JAK inhibitors with unique profiles to maximize therapeutic opportunities. INCB028050 is a selective orally bioavailable JAK1/JAK2 inhibitor with nanomolar potency against JAK1 (5.9 nM) and JAK2 (5.7 nM). INCB028050 inhibits intracellular signaling of multiple proinflammatory cytokines including IL-6 and IL-23 at concentrations <50 nM. Significant efficacy, as assessed by improvements in clinical, histologic and radiographic signs of disease, was achieved in the rat adjuvant arthritis model with doses of INCB028050 providing partial and/or periodic inhibition of JAK1/JAK2 and no inhibition of JAK3. Diminution of inflammatory Th1 and Th17 associated cytokine mRNA levels was observed in the draining lymph nodes of treated rats. INCB028050 was also effective in multiple murine models of arthritis, with no evidence of suppression of humoral immunity or adverse hematologic effects. These data suggest that fractional inhibition of JAK1 and JAK2 is sufficient for significant activity in autoimmune disease models. Clinical evaluation of INCB028050 in RA is ongoing.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Experimental/enzymology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Animals , Arthritis, Experimental/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/enzymology , Autoimmune Diseases/immunology , Cell Line , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Female , Humans , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/physiology , Janus Kinase 1/physiology , Janus Kinase 2/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Random Allocation , Rats , Rats, Inbred Lew , Signal Transduction/drug effects , Signal Transduction/immunology
12.
ACS Med Chem Lett ; 13(11): 1797-1804, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36385925

ABSTRACT

A series of exceptionally selective CDK2 inhibitors are described. Starting from an HTS hit, we successfully scaffold hopped to a 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one core structure, which imparted a promising initial selectivity within the CDK family. Extensive further SAR identified additional factors that drove selectivity to above 200× for CDKs 1/4/6/7/9. General kinome selectivity was also greatly improved. Finally, use of in vivo metabolite identification allowed us to pinpoint sulfonamide dealkylation as the primary metabolite, which was ameliorated through the deuterium effect.

13.
ACS Med Chem Lett ; 13(7): 1159-1164, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35859885

ABSTRACT

Activin receptor-like kinase 2 (ALK2) is a transmembrane kinase receptor that mediates the signaling of the members of the TGF-ß superfamily. The aberrant activation of ALK2 has been linked to the rare genetic disorder fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) that are associated with severely reduced life expectancy in pediatric patients. ALK2 has also been shown to play an essential role in iron metabolism by regulating hepcidin levels and affecting anemia of chronic disease. Thus, selective inhibition of ALK2 has emerged as a promising strategy for the treatment of multiple disorders. Herein, we report the discovery of a novel pyrazolopyrimidines series as highly potent, selective, and orally bioavailable inhibitors of ALK2. Structure-based drug design and systematic structure-activity relationship studies were employed to identify potent inhibitors displaying high selectivity against other ALK subtypes with good pharmacokinetic profiles.

14.
J Med Chem ; 65(22): 15433-15442, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36356320

ABSTRACT

Upregulation of the fibroblast growth factor receptor (FGFR) signaling pathway has been implicated in multiple cancer types, including cholangiocarcinoma and bladder cancer. Consequently, small molecule inhibition of FGFR has emerged as a promising therapy for patients suffering from these diseases. First-generation pan-FGFR inhibitors, while highly effective, suffer from several drawbacks. These include treatment-related hyperphosphatemia and significant loss of potency for the mutant kinases. Herein, we present the discovery and optimization of novel FGFR2/3 inhibitors that largely maintain potency for the common gatekeeper mutants and have excellent selectivity over FGFR1. A combination of meticulous structure-activity relationship (SAR) analysis, structure-based drug design, and medicinal chemistry rationale ultimately led to compound 29, a potent and selective FGFR2/3 inhibitor with excellent in vitro absorption, distribution, metabolism, excretion (ADME), and pharmacokinetics in rat. A pharmacodynamic study of a closely related compound established that maximum inhibition of downstream ERK phosphorylation could be achieved with no significant effect on serum phosphate levels relative to vehicle.


Subject(s)
Neoplasms , Protein Kinase Inhibitors , Receptors, Fibroblast Growth Factor , Animals , Rats , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Signal Transduction , Structure-Activity Relationship , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/chemistry , Receptors, Fibroblast Growth Factor/drug effects
15.
Cancer Discov ; 12(6): 1482-1499, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35254416

ABSTRACT

Blocking the activity of the programmed cell death protein 1 (PD-1) inhibitory receptor with therapeutic antibodies against either the ligand (PD-L1) or PD-1 itself has proven to be an effective treatment modality for multiple cancers. Contrasting with antibodies, small molecules could demonstrate increased tissue penetration, distinct pharmacology, and potentially enhanced antitumor activity. Here, we describe the identification and characterization of INCB086550, a novel, oral, small-molecule PD-L1 inhibitor. In vitro, INCB086550 selectively and potently blocked the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, and induced stimulation-dependent cytokine production in primary human immune cells. In vivo, INCB086550 reduced tumor growth in CD34+ humanized mice and induced T-cell activation gene signatures, consistent with PD-L1/PD-1 pathway blockade. Preliminary data from an ongoing phase I study confirmed PD-L1/PD-1 blockade in peripheral blood cells, with increased immune activation and tumor growth control. These data support continued clinical evaluation of INCB086550 as an alternative to antibody-based therapies. SIGNIFICANCE: We have identified a potent small-molecule inhibitor of PD-L1, INCB086550, which has biological properties similar to PD-L1/PD-1 monoclonal antibodies and may represent an alternative to antibody therapy. Preliminary clinical data in patients demonstrated increased immune activation and tumor growth control, which support continued clinical evaluation of this approach. See related commentary by Capparelli and Aplin, p. 1413. This article is highlighted in the In This Issue feature, p. 1397.


Subject(s)
B7-H1 Antigen , Neoplasms , Animals , Humans , Immune Checkpoint Inhibitors , Lymphocyte Activation , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor
16.
J Pharmacol Exp Ther ; 338(1): 228-39, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21459966

ABSTRACT

C-C chemokine receptor 5 (CCR5) is a clinically proven target for inhibition of HIV-1 infection and a potential target for various inflammatory diseases. In this article, we describe 5-[(4-{(3S)-4-[(1R,2R)-2-ethoxy-5-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]-3-methylpiperazin-1-yl}-4-methylpiperidin-1-yl)carbonyl]-4,6-dimethylpyrimidine dihydrochloride (INCB9471), a potent and specific inhibitor of human CCR5 that has been proven to be safe and efficacious in viral load reduction in phase I and II human clinical trails. INCB9471 was identified using a primary human monocyte-based radioligand competition binding assay. It potently inhibited macrophage inflammatory protein-1ß-induced monocyte migration and infection of peripheral blood mononuclear cells by a panel of R5-HIV-1 strains. The results from binding and signaling studies using incremental amounts of INCB9471 demonstrated INCB9471 as a noncompetitive CCR5 inhibitor. The CCR5 residues that are essential for interaction with INCB9471 were identified by site-specific mutagenesis studies. INCB9471 rapidly associates with but slowly dissociates from CCR5. When INCB9471 was compared with three CCR5 antagonists that had been tested in clinical trials, the potency of INCB9471 in blocking CCR5 ligand binding was similar to those of 4,6-dimethyl-5-{[4-methyl-4-((3S)-3-methyl-4-{(1R0-2-(methyloxy)-1-[4-(trifluoromethyl) phenyl]ethyl}-1-piperazingyl)-1-piperidinyl]carbonyl}pyrimidine (SCH-D; vicriviroc), 4-{[4-({(3R)-1-butyl-3-[(R)-cyclohexyl(hydroxyl)methyl]-2, 5-dioxo-1,4,9-triazaspiro[5.5]undec-9-yl}methyl)phenyl]oxy}benzoic acid hydrochloride (873140; aplaviroc), and 4,4-difluoro-N-((1S)-3-{(3-endo)-3-[3-methyl-5-(1-methylethyl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]oct-8-yl}-1-phenylpropyl)cyclohexanecarboxamide (UK427857; maraviroc). Its inhibitory activity against CCR5-mediated Ca(2+) mobilization was also similar to those of SCH-D and 873140. Further analysis suggested that INCB9471 and UK427857 may have different binding sites on CCR5. The significance of two CCR5 antagonists with different binding sites is discussed in the context of potentially overcoming drug-resistant HIV-1 strains.


Subject(s)
Anti-HIV Agents/pharmacology , CCR5 Receptor Antagonists , Cell Movement/drug effects , HIV Infections/drug therapy , HIV-1/drug effects , Monocytes/drug effects , Piperazines/pharmacology , Piperazines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Allosteric Site/physiology , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/therapeutic use , Cell Movement/physiology , Cells, Cultured , Dose-Response Relationship, Drug , HEK293 Cells , HIV Infections/immunology , HIV Infections/pathology , Humans , Macaca fascicularis , Monocytes/pathology , Piperazines/chemistry , Protein Binding/physiology , Pyrimidines/chemistry , Receptors, CCR5/physiology
17.
Bioorg Med Chem Lett ; 21(6): 1827-31, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21316220

ABSTRACT

This report describes the design and synthesis of a series of CCR2 antagonists incorporating novel non-aryl/heteroaryl RHS (right hand side) motifs. Previous SAR in the area has suggested an aryl/heteroaryl substituent as a necessary structural feature for binding to the CCR2 receptor. Herein we describe the SAR with regards to potency (binding to hCCR2), dofetilide activity and metabolic stability (in vitro HLM) for this series. The resulting outcome was the identification of compounds with excellent properties for the investigation of the role of CCR2 in disease.


Subject(s)
Drug Design , Receptors, CCR2/antagonists & inhibitors , Binding Sites , Models, Molecular , Structure-Activity Relationship
18.
19.
Bioorg Med Chem Lett ; 21(9): 2626-30, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21315584

ABSTRACT

We describe the systematic optimization, focused on the improvement of CV-TI, of a series of CCR2 antagonists. This work resulted in the identification of 10 (((1S,3R)-1-isopropyl-3-((3S,4S)-3-methoxy-tetrahydro-2H-pyran-4-ylamino)cyclopentyl)(4-(5-(trifluoromethyl)pyridazin-3-yl)piperazin-1-yl)methanone) which possessed a low projected human dose 35-45mg BID and a CV-TI=3800-fold.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Models, Molecular , Piperazines/chemistry , Piperazines/pharmacology , Pyridazines/chemistry , Pyridazines/pharmacology , Receptors, CCR2/agonists , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Biological Assay , Humans , Inhibitory Concentration 50 , Microsomes/drug effects , Microsomes/metabolism , Molecular Structure , Piperazines/pharmacokinetics , Protein Binding/drug effects , Pyridazines/pharmacokinetics , Receptors, CCR2/blood , Structure-Activity Relationship
20.
Pharmaceutics ; 13(7)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34371735

ABSTRACT

Named after the two-faced Roman god of doorways, Janus kinases (JAKs) represent a class of tyrosine kinases. The JAK signaling pathway is pivotal for the downstream signaling of inflammatory cytokines, including interleukins, interferons, and multiple growth factors. This article provides an overview of the JAK pathway and signaling, its significance in immune-mediated dermatologic diseases and the development of a targeted, localized option of a selective JAK inhibitor, ruxolitinib cream. In the early 1990s, various discovery and clinical development programs were initiated to explore pharmaceutical inhibition of the JAK-STAT pathway. Incyte Corporation launched a strategy to identify molecules suitable for both topical as well as oral delivery. Ruxolitinib was designed as a molecule with low nanomolar potency selective for JAK1 and 2 enzymes, but without significant inhibition of non-JAK kinases, as well as physicochemical properties for both topical and oral administration. An oil-in-water emulsified ruxolitinib cream formulation was developed for topical application and was studied in multiple immune-mediated dermatologic diseases including psoriasis, alopecia areata, atopic dermatitis and vitiligo. Ruxolitinib cream represents a novel, JAK1/2 selective therapy that can be delivered directly to the skin to treat a number of cytokine-driven, inflammatory dermatoses.

SELECTION OF CITATIONS
SEARCH DETAIL