Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Publication year range
1.
PLoS Comput Biol ; 20(7): e1012311, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39083536

ABSTRACT

Like other tropical and subtropical regions, influenza viruses can circulate year-round in Hong Kong. However, during the COVID-19 pandemic, there was a significant decrease in influenza activity. The objective of this study was to retrospectively forecast influenza activity during the year 2020 and assess the impact of COVID-19 public health social measures (PHSMs) on influenza activity and hospital admissions in Hong Kong. Using weekly surveillance data on influenza virus activity in Hong Kong from 2010 to 2019, we developed a statistical modeling framework to forecast influenza virus activity and associated hospital admissions. We conducted short-term forecasts (1-4 weeks ahead) and medium-term forecasts (1-13 weeks ahead) for the year 2020, assuming no PHSMs were implemented against COVID-19. We estimated the reduction in transmissibility, peak magnitude, attack rates, and influenza-associated hospitalization rate resulting from these PHSMs. For short-term forecasts, mean ambient ozone concentration and school holidays were found to contribute to better prediction performance, while absolute humidity and ozone concentration improved the accuracy of medium-term forecasts. We observed a maximum reduction of 44.6% (95% CI: 38.6% - 51.9%) in transmissibility, 75.5% (95% CI: 73.0% - 77.6%) in attack rate, 41.5% (95% CI: 13.9% - 55.7%) in peak magnitude, and 63.1% (95% CI: 59.3% - 66.3%) in cumulative influenza-associated hospitalizations during the winter-spring period of the 2019/2020 season in Hong Kong. The implementation of PHSMs to control COVID-19 had a substantial impact on influenza transmission and associated burden in Hong Kong. Incorporating information on factors influencing influenza transmission improved the accuracy of our predictions.


Subject(s)
COVID-19 , Forecasting , Hospitalization , Influenza, Human , Pandemics , SARS-CoV-2 , Seasons , Humans , Hong Kong/epidemiology , Influenza, Human/epidemiology , Influenza, Human/transmission , COVID-19/epidemiology , COVID-19/transmission , Hospitalization/statistics & numerical data , Forecasting/methods , Retrospective Studies , Models, Statistical , Computational Biology
2.
J Infect Dis ; 230(1): 152-160, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052734

ABSTRACT

BACKGROUND: The hemagglutination inhibition antibody (HAI) titer contributes only a part of vaccine-induced protection against influenza virus infections. Using causal mediation analysis, we quantified the proportion of vaccine efficacy mediated by postvaccination HAI titers. METHODS: We conducted causal mediation analyses using data from a randomized, active-comparator controlled, phase III, trial of an inactivated, split-virion seasonal quadrivalent influenza vaccine in children conducted from October 2010 to December 2011 in 8 countries. Vaccine efficacy was estimated using a weighted Cox proportional hazards model. Estimates were decomposed into the direct and indirect effects mediated by postvaccination HAI titers. RESULTS: The proportions of vaccine efficacy mediated by postvaccination HAI titers were estimated to be 22% (95% confidence interval, 18%--47%) for influenza A(H1N1), 20% (16%-39%) for influenza A(H3N2), and 37% (26%-85%) for influenza B/Victoria. CONCLUSIONS: HAI titers partially mediate influenza vaccine efficacy against influenza A(H1N1), A(H3N2), and B/Victoria. Our estimates were lower than in previous studies, possibly reflecting expected heterogeneity in antigenic similarity between vaccine and circulating viruses across seasons.


Subject(s)
Antibodies, Viral , Hemagglutination Inhibition Tests , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza Vaccines , Influenza, Human , Vaccine Efficacy , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza A Virus, H1N1 Subtype/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Influenza A Virus, H3N2 Subtype/immunology , Female , Influenza B virus/immunology , Male , Child, Preschool , Child , Infant , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
3.
Clin Infect Dis ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041887

ABSTRACT

BACKGROUND: Studies have reported that repeated annual vaccination may influence influenza vaccination effectiveness in the current season. METHODS: We established a 5-year randomized placebo-controlled trial of repeated influenza vaccination (Flublok, Sanofi Pasteur) in adults 18-45 years of age. In the first two years, participants received vaccination (V) or saline placebo (P) as follows: P-P, P-V, or V-V. Serum samples were collected each year just before vaccination and after 30 and 182 days. A subset of sera collected at 5 timepoints from 95 participants were tested for antibodies against vaccine strains. RESULTS: From 23 October 2020 through 11 March 2021 we enrolled and randomized 447 adults. Among vaccinated individuals, antibody titers increased between days 0 and 30 against each of the vaccine strains, with smaller increases for repeat vaccinees who on average had higher pre-vaccination titers in year 2. There were statistically significant differences in the proportion of participants achieving >=four-fold rises in antibody titer for the repeat vaccinees for influenza A(H1N1), B/Victoria and B/Yamagata, but not for A(H3N2). Among participants who received vaccination in year 2, there were no statistically significant differences between the P-V and V-V groups in geometric mean titers at day 30 or the proportions of participants with antibody titers ≥40 at day 30 for any of the vaccine strains. CONCLUSIONS: In the first two years, during which influenza did not circulate, repeat vaccinees and first-time vaccinees had similar post-vaccination geometric mean titers to all four vaccine strains, indicative of similar levels of clinical protection.

4.
Emerg Infect Dis ; 30(2): 262-269, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181800

ABSTRACT

We evaluated the population-level benefits of expanding treatment with the antiviral drug Paxlovid (nirmatrelvir/ritonavir) in the United States for SARS-CoV-2 Omicron variant infections. Using a multiscale mathematical model, we found that treating 20% of symptomatic case-patients with Paxlovid over a period of 300 days beginning in January 2022 resulted in life and cost savings. In a low-transmission scenario (effective reproduction number of 1.2), this approach could avert 0.28 million (95% CI 0.03-0.59 million) hospitalizations and save US $56.95 billion (95% CI US $2.62-$122.63 billion). In a higher transmission scenario (effective reproduction number of 3), the benefits increase, potentially preventing 0.85 million (95% CI 0.36-1.38 million) hospitalizations and saving US $170.17 billion (95% CI US $60.49-$286.14 billion). Our findings suggest that timely and widespread use of Paxlovid could be an effective and economical approach to mitigate the effects of COVID-19.


Subject(s)
COVID-19 , Lactams , Leucine , Nitriles , Proline , Public Health , Ritonavir , Humans , United States/epidemiology , SARS-CoV-2 , Antiviral Agents/therapeutic use , Drug Combinations
5.
Emerg Infect Dis ; 30(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38190760

ABSTRACT

To support the ongoing management of viral respiratory diseases while transitioning out of the acute phase of the COVID-19 pandemic, many countries are moving toward an integrated model of surveillance for SARS-CoV-2, influenza virus, and other respiratory pathogens. Although many surveillance approaches catalyzed by the COVID-19 pandemic provide novel epidemiologic insight, continuing them as implemented during the pandemic is unlikely to be feasible for nonemergency surveillance, and many have already been scaled back. Furthermore, given anticipated cocirculation of SARS-CoV-2 and influenza virus, surveillance activities in place before the pandemic require review and adjustment to ensure their ongoing value for public health. In this report, we highlight key challenges for the development of integrated models of surveillance. We discuss the relative strengths and limitations of different surveillance practices and studies as well as their contribution to epidemiologic assessment, forecasting, and public health decision-making.


Subject(s)
COVID-19 , Virus Diseases , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Public Health
6.
Am J Epidemiol ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38904437

ABSTRACT

Prior infection with SARS-CoV-2 can provide protection against infection and severe COVID-19. We aimed to determine the impact of pre-existing immunity on the vaccine effectiveness (VE) estimates. We systematically reviewed and meta-analysed 66 test-negative design (TND) studies that examined VE against infection or severe disease (hospitalization, ICU admission, or death) for primary vaccination series. Pooled VE among studies that included people with prior COVID-19 infection was lower against infection (pooled VE: 77%; 95% confidence interval (CI): 72%, 81%) and severe disease (pooled VE: 86%; 95% CI: 83%, 89%), compared with studies that excluded people with prior COVID-19 infection (pooled VE against infection: 87%; 95% CI: 85%, 89%; pooled VE against severe disease: 93%; 95% CI: 91%, 95%). There was a negative correlation between VE estimates against infection and severe disease, and the cumulative incidence of cases before the start of the study or incidence rates during the study period. We found clear empirical evidence that higher levels of pre-existing immunity were associated with lower VE estimates. Prior infections should be treated as both a confounder and effect modificatory when the policies target the whole population or stratified by infection history, respectively.

7.
Am J Epidemiol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844610

ABSTRACT

Modeling studies of household transmission data have helped characterize the role of children in influenza and COVID-19 epidemics. However, estimates from these studies may be biased since they do not account for the heterogeneous nature of household contacts. Here, we quantified the impact of contact heterogeneity between household members on the estimation of child relative susceptibility and infectivity. We simulated epidemics of SARS-CoV-2-like and influenza-like infections in a synthetic population of 1,000 households assuming heterogeneous contact levels. Relative contact frequencies were derived from a household contact study according to which contacts are more frequent in the father-mother pair, followed by the child-mother, child-child, and finally child-father pairs. Child susceptibility and infectivity were then estimated while accounting for heterogeneous contacts or not. When ignoring contact heterogeneity, child relative susceptibility was underestimated by approximately 20% in the two disease scenarios. Child relative infectivity was underestimated by 20% when children and adults had different infectivity levels. These results are sensitive to our assumptions of European-style household contact patterns; but they highlight that household studies collecting both disease and contact data are needed to assess the role of complex household contact behavior on disease transmission and improve estimation of key biological parameters.

8.
Am J Epidemiol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013785

ABSTRACT

The serial interval distribution is used to approximate the generation time distribution, an essential parameter to infer the transmissibility (${R}_t$) of an epidemic. However, serial interval distributions may change as an epidemic progresses. We examined detailed contact tracing data on laboratory-confirmed cases of COVID-19 in Hong Kong during the five waves from January 2020 to July 2022. We reconstructed the transmission pairs and estimated time-varying effective serial interval distributions and factors associated with longer or shorter intervals. Finally, we assessed the biases in estimating transmissibility using constant serial interval distributions. We found clear temporal changes in mean serial interval estimates within each epidemic wave studied and across waves, with mean serial intervals ranged from 5.5 days (95% CrI: 4.4, 6.6) to 2.7 (95% CrI: 2.2, 3.2) days. The mean serial intervals shortened or lengthened over time, which were found to be closely associated with the temporal variation in COVID-19 case profiles and public health and social measures and could lead to the biases in predicting ${R}_t$. Accounting for the impact of these factors, the time-varying quantification of serial interval distributions could lead to improved estimation of ${R}_t$, and provide additional insights into the impact of public health measures on transmission.

9.
Article in English | MEDLINE | ID: mdl-38817046

ABSTRACT

OBJECTIVE: To determine the effectiveness of nirmatrelvir/ritonavir and molnupiravir among vaccinated and unvaccinated non-hospitalized adults with COVID-19. METHODS: Observational studies of nirmatrelvir/ritonavir or molnupiravir compared to no antiviral drug treatment for COVID-19 in non-hospitalized adults with data on vaccination status were included. We searched MEDLINE, EMBASE, Scopus, Web of Science, WHO COVID-19 Research Database and medRxiv for reports published between 1 January 2022 and 8 November 2023. The primary outcome was a composite of hospitalization or mortality up to 35 days after COVID-19 diagnosis. Risk of bias was assessed with ROBINS-I. Risk ratios (RR), hazard ratios (HR) and risk differences (RD) were separately estimated using random-effects models. RESULTS: We included 30 cohort studies on adults treated with nirmatrelvir/ritonavir (n = 462 279) and molnupiravir (n = 48 008). Nirmatrelvir/ritonavir probably reduced the composite outcome (RR 0.62, 95%CI 0.55-0.70; I2 = 0%; moderate certainty) with no evidence of effect modification by vaccination status (RR Psubgroup = 0.47). In five studies, RD estimates against the composite outcome for nirmatrelvir/ritonavir were 1.21% (95%CI 0.57% to 1.84%) in vaccinated and 1.72% (95%CI 0.59% to 2.85%) in unvaccinated subgroups.Molnupiravir may slightly reduce the composite outcome (RR 0.75, 95%CI 0.67-0.85; I2 = 32%; low certainty). Evidence of effect modification by vaccination status was inconsistent among studies reporting different effect measures (RR Psubgroup = 0.78; HR Psubgroup = 0.08). In two studies, RD against the composite outcome for molnupiravir were -0.01% (95%CI -1.13% to 1.10%) in vaccinated and 1.73% (95%CI -2.08% to 5.53%) in unvaccinated subgroups. CONCLUSIONS: Among cohort studies of non-hospitalized adults with COVID-19, nirmatrelvir/ritonavir is effective against the composite outcome of severe COVID-19 independent of vaccination status. Further research and a reassessment of molnupiravir use among vaccinated adults are warranted. REGISTRATION: PROSPERO CRD42023429232.

10.
Epidemiology ; 35(3): 368-371, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38630510

ABSTRACT

This article discusses causal interpretations of epidemiologic studies of the effects of vaccination on sequelae after acute severe acute respiratory syndrome coronavirus 2 infection. To date, researchers have tried to answer several different research questions on this topic. While some studies assessed the impact of postinfection vaccination on the presence of or recovery from post-acute coronavirus disease 2019 syndrome, others quantified the association between preinfection vaccination and postacute sequelae conditional on becoming infected. However, the latter analysis does not have a causal interpretation, except under the principal stratification framework-that is, this comparison can only be interpreted as causal for a nondiscernible stratum of the population. As the epidemiology of coronavirus disease 2019 is now nearly entirely dominated by reinfections, including in vaccinated individuals, and possibly caused by different Omicron subvariants, it has become even more important to design studies on the effects of vaccination on postacute sequelae that address precise causal questions and quantify effects corresponding to implementable interventions.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , SARS-CoV-2 , Vaccination , Disease Progression
11.
Virol J ; 21(1): 70, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38515117

ABSTRACT

Since the emergence of SARS-CoV-2, different variants and subvariants successively emerged to dominate global virus circulation as a result of immune evasion, replication fitness or both. COVID-19 vaccines continue to be updated in response to the emergence of antigenically divergent viruses, the first being the bivalent RNA vaccines that encodes for both the Wuhan-like and Omicron BA.5 subvariant spike proteins. Repeated infections and vaccine breakthrough infections have led to complex immune landscapes in populations making it increasingly difficult to assess the intrinsic neutralizing antibody responses elicited by the vaccines. Hong Kong's intensive COVID-19 containment policy through 2020-2021 permitted us to identify sera from a small number of infection-naïve individuals who received 3 doses of the RNA BNT162b2 vaccine encoding the Wuhan-like spike (WT) and were boosted with a fourth dose of the WT vaccine or the bivalent WT and BA.4/5 spike (WT + BA.4/5). While neutralizing antibody to wild-type virus was comparable in both vaccine groups, BNT162b2 (WT + BA.4/BA.5) bivalent vaccine elicited significantly higher plaque neutralizing antibodies to Omicron subvariants BA.5, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3.2, EG.5.1, HK.3, BA.2.86 and JN.1, compared to BNT162b2 monovalent vaccine. The single amino acid substitution that differentiates the spike of JN.1 from BA.2.86 resulted in a profound antigenic change.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Broadly Neutralizing Antibodies , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Vaccination , Antibodies, Viral
12.
Epidemiol Infect ; 152: e43, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38500342

ABSTRACT

From 2020 to December 2022, China implemented strict measures to contain the spread of severe acute respiratory syndrome coronavirus 2. However, despite these efforts, sustained outbreaks of the Omicron variants occurred in 2022. We extracted COVID-19 case numbers from May 2021 to October 2022 to identify outbreaks of the Delta and Omicron variants in all provinces of mainland China. We found that omicron outbreaks were more frequent (4.3 vs. 1.6 outbreaks per month) and longer-lasting (mean duration: 13 vs. 4 weeks per outbreak) than Delta outbreaks, resulting in a total of 865,100 cases, of which 85% were asymptomatic. Despite the average Government Response Index being 12% higher (95% confidence interval (CI): 9%, 15%) in Omicron outbreaks, the average daily effective reproduction number (Rt) was 0.45 higher (95% CI: 0.38, 0.52, p < 0.001) than in Delta outbreaks. Omicron outbreaks were suppressed in 32 days on average (95% CI: 26, 39), which was substantially longer than Delta outbreaks (14 days; 95% CI: 11, 19; p = 0.004). We concluded that control measures effective against Delta could not contain Omicron outbreaks in China. This highlights the need for continuous evaluation of new variants' epidemiology to inform COVID-19 response decisions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Disease Outbreaks , China/epidemiology
13.
Epidemiol Infect ; 152: e60, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584132

ABSTRACT

Previous studies suggest that influenza virus infection may provide temporary non-specific immunity and hence lower the risk of non-influenza respiratory virus infection. In a randomized controlled trial of influenza vaccination, 1 330 children were followed-up in 2009-2011. Respiratory swabs were collected when they reported acute respiratory illness and tested against influenza and other respiratory viruses. We used Poisson regression to compare the incidence of non-influenza respiratory virus infection before and after influenza virus infection. Based on 52 children with influenza B virus infection, the incidence rate ratio (IRR) of non-influenza respiratory virus infection after influenza virus infection was 0.47 (95% confidence interval: 0.27-0.82) compared with before infection. Simulation suggested that this IRR was 0.87 if the temporary protection did not exist. We identified a decreased risk of non-influenza respiratory virus infection after influenza B virus infection in children. Further investigation is needed to determine if this decreased risk could be attributed to temporary non-specific immunity acquired from influenza virus infection.


Subject(s)
Herpesviridae Infections , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Respiratory Tract Infections , Child , Humans , Influenza, Human/epidemiology , Influenza B virus , Respiratory Tract Infections/epidemiology
14.
PNAS Nexus ; 3(6): pgae212, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881839

ABSTRACT

Amid the COVID-19 pandemic, education systems globally implemented protective measures, notably mandatory mask wearing. As the pandemic's dynamics changed, many municipalities lifted these mandates, warranting a critical examination of these policy changes' implications. This study examines the effects of lifting mask mandates on COVID-19 transmission within Massachusetts school districts. We first replicated previous research that utilized a difference-in-difference (DID) model for COVID-19 incidence. We then repeated the DID analysis by replacing the outcome measurement with the reproductive number (Rt ), reflecting the transmissibility. Due to the data availability, the Rt we estimated only measures the within school transmission. We found a similar result in the replication using incidence with an average treatment effect on treated (ATT) of 39.1 (95% CI: 20.4 to 57.4) COVID-19 cases per 1,000 students associated with lifting masking mandates. However, when replacing the outcome measurement to Rt , our findings suggest that no significant association between lifting mask mandates and reduced Rt (ATT: 0.04, 95% CI: -0.09 to 0.18), except for the first 2 weeks postintervention. Moreover, we estimated Rt below 1 at 4 weeks before lifting mask mandates across all school types, suggesting nonsustainable transmission before the implementation. Our reanalysis suggested no evidence of lifting mask mandates in schools impacted the COVID-19 transmission in the long term. Our study highlights the importance of examining the transmissibility outcome when evaluating interventions against transmission.

15.
J Infect Public Health ; 17(9): 102515, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39173559

ABSTRACT

BACKGROUND: Guided by the data from the surveillance system, public health efforts have contributed to reducing the burden of influenza in many countries. During the COVID-19 pandemic, many surveillance resources were directed at tracking the severe acute respiratory syndrome-Coronavirus 2. However, most countries have not reported surveillance evaluations during the COVID-19 pandemic. METHODS: Using the U.S. CDC surveillance evaluation method, we evaluated the influenza-like illness (ILI) sentinel surveillance performance in South Korea between January 2017 and September 2023. For the timeliness, we measured the mean time lag between the reports from the sentinel sites to the Korea Disease Control and Prevention Agency (KDCA) and surveillance result dissemination from KDCA. For the completeness, we measured the submission rate of complete reports per overall number of reports from each sentinel site to the KDCA. For the sensitivity, we calculated the correlation coefficient between the monthly number of ILI reports and the patients with ILI from the Korea national reimbursement data by either Pearson's or Spearman's test. For the representativeness, we compared the age-specific distribution of ILI between the surveillance data and the national reimbursement data using a chi-squared test. RESULTS: We found that the surveillance performance of timeliness (less than 2 weeks) and completeness (97 %-98 %) was stable during the study period. However, we found a reduced surveillance sensitivity (correlation coefficient: 0.73 in 2020, and 0.84 in 2021) compared to that of 2017-2019 (0.96-0.99), and it recovered in 2022-2023 (0.93-0.97). We found no statistical difference across the proportion of age groups between the surveillance and reimbursement data during the study period (all P-values > 0.05). CONCLUSIONS: Ongoing surveillance performance monitoring is necessary to maintain efficient policy decision-making for the control of the influenza epidemic. Additional research is needed to assess the overall influenza surveillance system including laboratory and hospital-based surveillance in the country.

16.
Vaccine X ; 17: 100451, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379667

ABSTRACT

Background: Waning of COVID-19 vaccine efficacy/effectiveness (VE) has been observed across settings and epidemiological contexts. We conducted a systematic review of COVID-19 VE studies and performed a meta-regression analysis to improve understanding of determinants of waning. Methods: Systematic review of PubMed, medRxiv and the WHO-International Vaccine Access Center database summarizing VE studies on 31 December 2022. Studies were those presenting primary adult VE data from hybrid immunity or third/fourth mRNA COVID-19 monovalent vaccine doses [due to limited data with other vaccines] against Omicron, compared with unvaccinated individuals or individuals eligible for corresponding booster doses but who did not receive them. We used meta-regression models, adjusting for confounders, with weeks since vaccination as a restricted cubic spline, to estimate VE over time since vaccination. Results: We identified 55 eligible studies reporting 269 VE estimates. Most estimates (180/269; 67 %) described effectiveness of third dose vaccination; with 48 (18 %) and 41 (15 %) describing hybrid immunity and fourth dose effectiveness, respectively, mostly (200; 74 %) derived from test-negative design studies. Most estimates (176/269; 65 %) reported VE compared with unvaccinated comparison groups. Estimated VE against mild outcomes declined following third dose vaccination from 62 % (95 % CI: 58 % - 66 %) after 4 weeks to 48 % (41 % - 55 %) after 20 weeks. Fourth dose VE against mild COVID-19 declined from 48 % (41 % - 56 %) after 4 weeks to 47 % (19 % - 65 %) after 20 weeks. VE for severe outcomes was higher and declined in the three-dose group from 90 % (87 % - 92 %) after 4 weeks to 70 % (65 - 74 %) after 20 weeks. Conclusions: Time-since vaccination is an important determinant of booster dose VE, a finding which may support seasonal COVID-19 booster doses. Integration of VE and immunological parameters - and longer-term data including from other vaccine types - are needed to better-understand determinants of clinical protection.

17.
Vaccine ; 42(8): 1878-1882, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38395722

ABSTRACT

A test negative study was carried out from 13 June through to 15 November 2023 enrolling 3183 children hospitalized with acute respiratory illness in Hong Kong. Influenza A and B viruses were detected in 528 (16.6%) children, among which 419 (79.4%) were influenza A(H3N2). The overall vaccine effectiveness against hospitalization associated with any influenza virus infection was estimated as 22.4% (95% CI: -11.7%, 46.1%), and against influenza A(H3N2) specifically was 14.3% (95% CI: -29.2%, 43.2%). Despite the moderate to low VE estimated here, which could be a result of waning immunity and antigenic drift, influenza vaccination remains an important approach to reduce the impact of influenza in children.


Subject(s)
Influenza Vaccines , Influenza, Human , Child , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Hong Kong/epidemiology , Vaccine Efficacy , Hospitalization , Vaccination , Seasons
18.
Int J Antimicrob Agents ; 63(3): 107094, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272281

ABSTRACT

OBJECTIVES: Clinical evidence on the effectiveness of COVID-19 vaccines for children aged 1-3 years is scarce. The effectiveness of COVID-19 vaccines was evaluated among non-hospitalised children aged 1-3 years with SARS-CoV-2 Omicron infection in Hong Kong. METHODS: A retrospective cohort of all non-hospitalised children aged 1-3 years with confirmed SARS-CoV-2 infection between 4 August 2022 and 29 January 2023 in Hong Kong was analysed. Vaccinated group was defined as the recipients of one or more doses of CoronaVac or mRNA vaccine BNT162b2 (original, monovalent) at least 14 days prior to infection. Hazard ratios (HR) with 95% confidence intervals (95% CI) of study outcomes were estimated using Cox regression models. Effectiveness outcomes included 28-day all-cause mortality and COVID-19-related hospitalisation. RESULTS: A total of 5552 vaccinated patients and 5552 propensity-score matched controls (unvaccinated patients) were included for analysis. The cumulative incidence of COVID-19-related hospitalisation over 28 days was 2.3% and 2.9% in the vaccinated and control groups, respectively. There were no deaths in both groups. COVID-19 vaccination was associated with a significant reduction in 28-day COVID-19-related hospitalisation risk (HR=0.785, 95% CI=0.626-0.985, P=0.037), particularly for children aged 3 years, those who had received two or more vaccine doses, and those who received CoronaVac as the last dose. CONCLUSION: COVID-19 vaccination is associated with a significantly lower risk of 28-day COVID-19-related hospitalisation among infected children aged 1-3 years, particularly those who had received two or more vaccine doses. This observation emphasises the importance of completing the full two-dose or three-dose series to optimise vaccine effectiveness.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines, Inactivated , Child , Humans , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2/genetics , Retrospective Studies , RNA, Messenger
19.
Vaccine ; 42(9): 2385-2393, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38448323

ABSTRACT

INTRODUCTION: The association between COVID-19 vaccination and length of hospital stay may provide further insight into vaccination benefits, but few studies have investigated such associations in detail. We aimed to investigate the association between COVID-19 vaccination and length of hospital stay in COVID-19 patients during Omicron waves in Hong Kong, and explore potential predictors. METHODS: This retrospective cohort study was conducted on local patients aged ≥60 years who were admitted due to COVID-19 infection in Hong Kong in 2022, from 1 February to 22 November, and with 28 days of follow-up since admission. The exposure was either not vaccinated; or having received 2/3/4 doses of CoronaVac (Sinovac); or 2/3/4 doses of BNT162b2 (BioNTech/Fosun Pharma/Pfizer). Length of stay in hospital was the main outcome. Accelerated failure time models were used to quantify variation in hospital stay for vaccinated compared with unvaccinated patients, accounting for age, sex, comorbidity, type of vaccine and number of doses received, care home residence and admission timing; stratified by age groups and epidemic waves. RESULTS: This study included 32,398 patients aged 60 years and above for main analysis, their median (IQR) age was 79 (71-87) years, 53% were men, and 40% were unvaccinated. The patients were stratified by confirmation prior to or since 23 May 2022, resulting in a sample size of 15,803 and 16,595 in those two waves respectively. Vaccinated patients were found to have 13-39% shorter hospital stay compared to unvaccinated patients. More vaccine doses received were associated with shorter hospital stay, and BNT162b2 recipients had slightly shorter hospital stays than CoronaVac recipients. CONCLUSION: Vaccination was associated with reduced hospital stay in breakthrough infections. Increased vaccination uptake in older adults may improve hospital bed turnover and public health outcomes especially during large community epidemics.


Subject(s)
BNT162 Vaccine , COVID-19 , Male , Humans , Aged , Female , Hong Kong/epidemiology , COVID-19 Vaccines , Retrospective Studies , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization , Vaccination
20.
Pathog Glob Health ; 118(3): 262-276, 2024 05.
Article in English | MEDLINE | ID: mdl-38318877

ABSTRACT

Seroprevalence studies assessing community exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Ghana concluded that population-level immunity remained low as of February 2021. Thus, it is important to demonstrate how increasing vaccine coverage reduces the economic and public health impacts associated with SARS-CoV-2 transmission. To that end, this study used a Susceptible-Exposed-Presymptomatic-Symptomatic-Asymptomatic-Recovered-Dead-Vaccinated compartmental model to simulate coronavirus disease 2019 (COVID-19) transmission and the role of public health interventions in Ghana. The impact of increasing vaccination rates and decline in transmission rates due to nonpharmaceutical interventions (NPIs) on cumulative infections and deaths averted was explored under different scenarios. Latin hypercube sampling-partial rank correlation coefficient (LHS-PRCC) was used to investigate the uncertainty and sensitivity of the outcomes to the parameters. Simulation results suggest that increasing the vaccination rate to achieve 50% coverage was associated with almost 60,000 deaths and 25 million infections averted. In comparison, a 50% decrease in the transmission coefficient was associated with the prevention of about 150,000 deaths and 50 million infections. The LHS-PRCC results indicated that in the context of vaccination rate, cumulative infections and deaths averted were most sensitive to vaccination rate, waning immunity rates from vaccination, and waning immunity from natural infection. This study's findings illustrate the impact of increasing vaccination coverage and/or reducing the transmission rate by NPI adherence in the prevention of COVID-19 infections and deaths in Ghana.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccination Coverage , Humans , Ghana/epidemiology , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/transmission , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , Vaccination Coverage/statistics & numerical data , Adult , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL