Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Vasc Interv Radiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969336

ABSTRACT

PURPOSE: To test the hypothesis that Pressure-Enabled Drug Delivery (PEDD) would improve the delivery of surrogate therapeutic glass microspheres (GMs) via hepatic artery infusion to liver tumors when compared with a conventional endhole microcatheter. MATERIALS AND METHODS: The study was conducted in transgenic pigs (Oncopigs) with induced liver tumors. Tumors were infused intra-arterially with fluorescently labeled GM. PEDD with a specialized infusion device (TriNav; TriSalus Life Sciences, Westminster, Colorado) was compared with conventional endhole microcatheter delivery in both lobar and selective infusions. Near-infrared imaging was used to detect GM fluorescent signal in tumors. Image analysis with a custom deep learning algorithm (Visiopharm A/S) was used to quantitate signal intensity in relation to the tumor border. RESULTS: With lobar infusions, significant increases in GM signal intensity were observed in and around tumors after PEDD (n = 10) when compared with those after conventional delivery (n = 7), with PEDD increasing penetration into the tumor by 117% (P = .004). In selective infusions, PEDD (n = 9) increased penetration into the tumor by 39% relative to conventional delivery (n = 8, P = .032). Lobar PEDD of GMs to the tumor was statistically equivalent to conventional selective delivery (P = .497). CONCLUSIONS: PEDD with a TriNav device significantly improved GM uptake in liver tumors relative to conventional infusion in both lobar and selective procedures. Lobar GM delivery with PEDD was equivalent to conventional selective delivery with an endhole device, suggesting that proximal PEDD infusions may enable effective delivery without selection of distal target vessels.

2.
PLoS Pathog ; 16(9): e1008821, 2020 09.
Article in English | MEDLINE | ID: mdl-32941545

ABSTRACT

MHC-I-restricted, virus-specific cytotoxic CD8+ T cells (CTLs) may control human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication via the recognition and killing of productively infected CD4+ T cells. Several studies in SIV-infected macaques suggest that CD8+ T cells may also decrease virus production by suppressing viral transcription. Here, we show that non-HIV-specific, TCR-activated non-cytolytic CD8+ T cells suppress HIV transcription via a virus- and MHC-independent immunoregulatory mechanism that modulates CD4+ T cell proliferation and activation. We also demonstrate that this CD8+ T cell-mediated effect promotes the survival of infected CD4+ T cells harboring integrated, inducible virus. Finally, we used RNA sequencing and secretome analyses to identify candidate cellular pathways that are involved in the virus-silencing mediated by these CD8+ T cells. This study characterizes a previously undescribed mechanism of immune-mediated HIV silencing that may be involved in the establishment and maintenance of the reservoir under antiretroviral therapy and therefore represent a major obstacle to HIV eradication.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV-1/physiology , Histocompatibility Antigens Class I/immunology , Immunity, Innate , Transcription, Genetic/immunology , Virus Replication/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Proliferation , Humans , Macaca
3.
J Surg Res ; 272: 37-50, 2022 04.
Article in English | MEDLINE | ID: mdl-34929499

ABSTRACT

BACKGROUND: Effective treatment of solid tumors requires multi-modality approaches. In many patients with stage IV liver disease, current treatments are not curative. Chimeric antigen receptor T cells (CAR-T) are an intriguing option following success in hematological malignancies, but this has not been translated to solid tumors. Limitations include sub-optimal delivery and elevated interstitial fluid pressures. We developed a murine model to test the impact of high-pressure regional delivery (HPRD) on trafficking to liver metastases (LM) and tumor response. MATERIALS AND METHODS: CAR-T were generated from CD45.1 mice and adoptively transferred into LM-bearing CD45.2 mice via regional or systemic delivery (RD, SD). Trafficking, tumor growth, and toxicity were evaluated with flow cytometry, tumor bioluminescence (TB, photons/sec log2-foldover baseline), and liver function tests (LFTs). RESULTS: RD of CAR-T was more effective at controlling tumor growth versus SD from post-treatment days (PTD) 2-7 (P = 0.002). HPRD resulted in increased CAR-T penetration versus low-pressure RD (LPRD, P = 0.004), suppression of tumor proliferation (P = 0.03), and trended toward improved long-term control at PTD17 (TB=3.7 versus 6.1, P = 0.47). No LFT increase was noted utilizing HPRD versus LPRD (AST/ALT P = 0.65/0.84) while improved LFTs in RD versus SD groups suggested better tumor control (HPRD AST/ALT P = 0.04/0.04, LPRD AST/ALT P = 0.02/0.02). CONCLUSIONS: Cellular immunotherapy is an emerging option for solid tumors. Our model suggests RD and HPRD improved CAR-T penetration into solid tumors with improved short-term tumor control. Barriers associated with SD can be overcome using RD techniques to maximize therapeutic delivery and HPRD may further augment efficacy without increased toxicity.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Neoplasms , Receptors, Chimeric Antigen , Animals , Colorectal Neoplasms/therapy , Humans , Immunotherapy, Adoptive/methods , Liver Neoplasms/pathology , Mice , Neoplasms/therapy , T-Lymphocytes
4.
Gastroenterology ; 159(3): 999-1014.e9, 2020 09.
Article in English | MEDLINE | ID: mdl-32450149

ABSTRACT

BACKGROUND & AIMS: Development of nonalcoholic steatohepatitis (NASH) is associated with reductions in hepatic microRNA122 (MIR122); the RAR related orphan receptor A (RORA) promotes expression of MIR122. Increasing expression of RORA in livers of mice increases expression of MIR122 and reduces lipotoxicity. We investigated the effects of a RORA agonist in mouse models of NASH. METHODS: We screened a chemical library to identify agonists of RORA and tested their effects on a human hepatocellular carcinoma cell line (Huh7). C57BL/6 mice were fed a chow or high-fat diet (HFD) for 4 weeks to induce fatty liver. Mice were given hydrodynamic tail vein injections of a MIR122 antagonist (antagomiR-122) or a control antagomiR once each week for 3 weeks while still on the HFD or chow diet, or intraperitoneal injections of the RORA agonist RS-2982 or vehicle, twice each week for 3 weeks. Livers, gonad white adipose, and skeletal muscle were collected and analyzed by reverse-transcription polymerase chain reaction, histology, and immunohistochemistry. A separate group of mice were fed an atherogenic diet, with or without injections of RS-2982 for 3 weeks; livers were analyzed by immunohistochemistry, and plasma was analyzed for levels of aminotransferases. We analyzed data from liver tissues from patients with NASH included in the RNA-sequencing databases GSE33814 and GSE89632. RESULTS: Injection of mice with antagomiR-122 significantly reduced levels of MIR122 in plasma, liver, and white adipose tissue; in mice on an HFD, antagomiR-122 injections increased fat droplets and total triglyceride content in liver and reduced ß-oxidation and energy expenditure, resulting in significantly more weight gain than in mice given the control microRNA. We identified RS-2982 as an agonist of RORA and found it to increase expression of MIR122 promoter activity in Huh7 cells. In mice fed an HFD or atherogenic diet, injections of RS-2982 increased hepatic levels of MIR122 precursors and reduced hepatic synthesis of triglycerides by reducing expression of biosynthesis enzymes. In these mice, RS-2982 significantly reduced hepatic lipotoxicity, reduced liver fibrosis, increased insulin resistance, and reduced body weight compared with mice injected with vehicle. Patients who underwent cardiovascular surgery had increased levels of plasma MIR122 compared to its levels before surgery; increased expression of plasma MIR122 was associated with increased levels of plasma free fatty acids and levels of RORA. CONCLUSIONS: We identified the compound RS-2982 as an agonist of RORA that increases expression of MIR122 in cell lines and livers of mice. Mice fed an HFD or atherogenic diet given injections of RS-2982 had reduced hepatic lipotoxicity, liver fibrosis, and body weight compared with mice given the vehicle. Agonists of RORA might be developed for treatment of NASH.


Subject(s)
Lipid Regulating Agents/pharmacology , MicroRNAs/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , Nuclear Receptor Subfamily 1, Group F, Member 1/agonists , Obesity/drug therapy , Animals , Antagomirs/administration & dosage , Benzamides/pharmacology , Benzamides/therapeutic use , Body Weight , Cell Line, Tumor , Datasets as Topic , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Humans , Insulin Resistance , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Lipid Regulating Agents/therapeutic use , Liver/drug effects , Liver/pathology , Male , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/blood , Mutation , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Promoter Regions, Genetic/drug effects , Up-Regulation/drug effects
5.
PLoS Pathog ; 15(10): e1008074, 2019 10.
Article in English | MEDLINE | ID: mdl-31609991

ABSTRACT

Studies have demonstrated that intensive ART alone is not capable of eradicating HIV-1, as the virus rebounds within a few weeks upon treatment interruption. Viral rebound may be induced from several cellular subsets; however, the majority of proviral DNA has been found in antigen experienced resting CD4+ T cells. To achieve a cure for HIV-1, eradication strategies depend upon both understanding mechanisms that drive HIV-1 persistence as well as sensitive assays to measure the frequency of infected cells after therapeutic interventions. Assays such as the quantitative viral outgrowth assay (QVOA) measure HIV-1 persistence during ART by ex vivo activation of resting CD4+ T cells to induce latency reversal; however, recent studies have shown that only a fraction of replication-competent viruses are inducible by primary mitogen stimulation. Previous studies have shown a correlation between the acquisition of effector memory phenotype and HIV-1 latency reversal in quiescent CD4+ T cell subsets that harbor the reservoir. Here, we apply our mechanistic understanding that differentiation into effector memory CD4+ T cells more effectively promotes HIV-1 latency reversal to significantly improve proviral measurements in the QVOA, termed differentiation QVOA (dQVOA), which reveals a significantly higher frequency of the inducible HIV-1 replication-competent reservoir in resting CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV-1/immunology , HIV-1/physiology , Immunologic Memory/immunology , Virus Latency/immunology , Aged , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , HIV Infections/immunology , HIV-1/growth & development , Humans , Male , Middle Aged , Proviruses/growth & development , Viral Load/drug effects , Virus Latency/drug effects , Virus Replication/drug effects
6.
Bioorg Med Chem ; 31: 115952, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33421915

ABSTRACT

Chronic hepatitis B viral infection is a significant health problem world-wide, and currently available antiviral agents suppress HBV infections, but rarely cure this disease. It is presumed that antiviral agents that target the viral nuclear reservoir of transcriptionally active cccDNA may eliminate HBV infection. Through a series of chemical optimization, we identified a new series of glyoxamide derivatives affecting HBV nucleocapsid formation and cccDNA maintenance at low nanomolar levels. Among all the compounds synthesized, GLP-26 displays a major effect on HBV DNA, HBeAg secretion and cccDNA amplification. In addition, GLP-26 shows a promising pre-clinical profile and long-term effect on viral loads in a humanized mouse model.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Hepatitis B virus/drug effects , Sulfonylurea Compounds/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Sulfonylurea Compounds/chemical synthesis , Sulfonylurea Compounds/chemistry
7.
Article in English | MEDLINE | ID: mdl-31712213

ABSTRACT

Hepatitis B virus (HBV) affects an estimated 250 million chronic carriers worldwide. Though several vaccines exist, they are ineffective for those already infected. HBV persists due to the formation of covalently closed circular DNA (cccDNA)-the viral minichromosome-in the nucleus of hepatocytes. Current nucleoside analogs and interferon therapies rarely clear cccDNA, requiring lifelong treatment. Our group identified GLP-26, a novel glyoxamide derivative that alters HBV nucleocapsid assembly and prevents viral DNA replication. GLP-26 exhibited single-digit nanomolar anti-HBV activity, inhibition of HBV e antigen (HBeAg) secretion, and reduced cccDNA amplification, in addition to showing a promising preclinical profile. Strikingly, long term combination treatment with entecavir in a humanized mouse model induced a decrease in viral loads and viral antigens that was sustained for up to 12 weeks after treatment cessation.


Subject(s)
Antiviral Agents/pharmacology , Capsid/chemistry , Hepatitis B Vaccines/pharmacology , Hepatitis B virus/chemistry , Animals , Antiviral Agents/chemistry , Capsid/immunology , DNA, Circular/genetics , DNA, Circular/metabolism , Dogs , Guanine/analogs & derivatives , Hepatitis B/drug therapy , Hepatitis B Antigens/chemistry , Hepatitis B Antigens/genetics , Hepatitis B Surface Antigens/immunology , Hepatitis B Vaccines/chemistry , Hepatitis B virus/drug effects , Hepatitis B virus/metabolism , Hepatocytes/virology , Humans , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Nucleocapsid/drug effects , Rats , Virus Assembly
8.
Article in English | MEDLINE | ID: mdl-31061163

ABSTRACT

Dengue virus (DENV) and Japanese encephalitis virus (JEV) are important arthropod-borne viruses from the Flaviviridae family. DENV is a global public health problem with significant social and economic impacts, especially in tropical and subtropical areas. JEV is a neurotropic arbovirus endemic to east and southeast Asia. There are no U.S. FDA-approved antiviral drugs available to treat or to prevent DENV and JEV infections, leaving nearly one-third of the world's population at risk for infection. Therefore, it is crucial to discover potent antiviral agents against these viruses. Nucleoside analogs, as a class, are widely used for the treatment of viral infections. In this study, we discovered nucleoside analogs that possess potent and selective anti-JEV and anti-DENV activities across all serotypes in cell-based assay systems. Both viruses were susceptible to sugar-substituted 2'-C-methyl analogs with either cytosine or 7-deaza-7-fluoro-adenine nucleobases. Mouse studies confirmed the anti-DENV activity of these nucleoside analogs. Molecular models were assembled for DENV serotype 2 (DENV-2) and JEV RNA-dependent RNA polymerase replication complexes bound to nucleotide inhibitors. These models show similarities between JEV and DENV-2, which recognize the same nucleotide inhibitors. Collectively, our findings provide promising compounds and a structural rationale for the development of direct-acting antiviral agents with dual activity against JEV and DENV infections.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue/drug therapy , Encephalitis Viruses, Japanese/drug effects , Nucleosides/analogs & derivatives , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Dengue/blood , Dengue/pathology , Dengue Virus/genetics , Dengue Virus/physiology , Drug Evaluation, Preclinical/methods , Encephalitis Viruses, Japanese/genetics , Encephalitis Viruses, Japanese/physiology , Encephalitis, Arbovirus/drug therapy , Mice , Models, Molecular , Nucleosides/chemistry , Nucleosides/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication/drug effects
9.
Bioorg Med Chem Lett ; 29(20): 126639, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31493987

ABSTRACT

Exploration of the chemical space of known influenza polymerase PB2 inhibitor Pimodivir, was performed by our group. We synthesized and identified compounds 16a and 16b, two novel thienopyrimidine derivatives displaying anti-influenza A activity in the single digit nanomolar range in cell culture. Binding of these unique compounds in the influenza polymerase PB2 pocket was also determined using molecular modeling.


Subject(s)
Antiviral Agents/chemistry , Influenza A virus/drug effects , Influenza, Human/drug therapy , Pyridines/chemistry , Pyrimidines/chemistry , Pyrroles/chemistry , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , A549 Cells , Amino Acid Sequence , Animals , Antiviral Agents/pharmacology , Drug Discovery , Humans , Models, Molecular , Molecular Structure , Protein Binding , Pyridines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Structure-Activity Relationship , Virus Replication/drug effects
10.
Mol Pharmacol ; 93(2): 141-156, 2018 02.
Article in English | MEDLINE | ID: mdl-29242355

ABSTRACT

N-methyl-d-aspartate (NMDA) receptors are ligand-gated, cation-selective channels that mediate a slow component of excitatory synaptic transmission. Subunit-selective positive allosteric modulators of NMDA receptor function have therapeutically relevant effects on multiple processes in the brain. A series of pyrrolidinones, such as PYD-106, that selectively potentiate NMDA receptors that contain the GluN2C subunit have structural determinants of activity that reside between the GluN2C amino terminal domain and the GluN2C agonist binding domain, suggesting a unique site of action. Here we use molecular biology and homology modeling to identify residues that line a candidate binding pocket for GluN2C-selective pyrrolidinones. We also show that occupancy of only one site in diheteromeric receptors is required for potentiation. Both GluN2A and GluN2B can dominate the sensitivity of triheteromeric receptors to eliminate the actions of pyrrolidinones, thus rendering this series uniquely sensitive to subunit stoichiometry. We experimentally identified NMR-derived conformers in solution, which combined with molecular modeling allows the prediction of the bioactive binding pose for this series of GluN2C-selective positive allosteric modulators of NMDA receptors. These data advance our understanding of the site and nature of the ligand-protein interaction for GluN2C-selective positive allosteric modulators for NMDA receptors.


Subject(s)
Receptors, N-Methyl-D-Aspartate/metabolism , Allosteric Regulation , Animals , Binding Sites , Excitatory Amino Acid Agents/pharmacology , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Patch-Clamp Techniques , Protein Conformation , Proton Magnetic Resonance Spectroscopy , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/drug effects , Reproducibility of Results , Stereoisomerism , Xenopus laevis
11.
Bioorg Med Chem Lett ; 28(12): 2165-2170, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29779977

ABSTRACT

A series of tripeptidyl transition state inhibitors with new P1 and warhead moieties were synthesized and evaluated in a GI-1 norovirus replicon system and against GII-4 and GI-1 norovirus proteases. Compound 19, containing a 6-membered ring at the P1 position and a reactive aldehyde warhead exhibited sub-micromolar replicon inhibition. Retaining the same peptidyl scaffold, several reactive warheads were tested for protease inhibition and norovirus replicon inhibition. Of the six that were synthesized and tested, compounds 42, 43, and 45 potently inhibited the protease in biochemical assay and GI-1 norovirus replicon in the nanomolar range.


Subject(s)
Antiviral Agents/pharmacology , Norovirus/drug effects , Peptide Hydrolases/metabolism , Peptidomimetics/pharmacology , Protease Inhibitors/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Norovirus/enzymology , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship , Vero Cells , Virus Replication/drug effects
12.
Bioorg Med Chem Lett ; 27(23): 5296-5299, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29066308

ABSTRACT

Several ß-d-2'-deoxy-2'-substituted nucleoside analogs have displayed potent and selective anti-HCV activities and some of them have reached human clinical trials. In that regard, we report herein the synthesis of a series of 2'-deoxy,2'-dibromo substituted U, C, G and A nucleosides 10a-d and their corresponding phosphoramidate prodrugs 13a-d. The synthesized nucleosides 10a-d and prodrugs 13a-d were evaluated for their inhibitory activity against HCV as well as cellular toxicity. The results showed that the most potent compound was prodrug 13a, which exhibited micromolar inhibitory activity (EC50 = 1.5 ±â€¯0.8 µM) with no observed toxicity. In addition, molecular modeling and free energy perturbation calculations for the 5'-triphosphate formed from 13a and related 2'-modified nucleotides are discussed.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Nucleosides/pharmacology , Phosphoric Acids/pharmacology , Prodrugs/pharmacology , Amides/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/chemistry , Phosphoric Acids/chemistry , Prodrugs/chemistry , Structure-Activity Relationship , Vero Cells
13.
Tetrahedron Lett ; 58(7): 642-644, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28163339

ABSTRACT

Herein, we report the synthesis of novel 2',2',3',3'-tetrafluorinated nucleoside analogs along with their phosphoramidate prodrugs. A tetrafluoro ribose moiety was coupled with different Boc/benzoyl-protected nucleobases under Mitsunobu conditions. After deprotection, tetrafluorinated nucleosides 13b, 14b, 20b-22b were reacted with phenyl-(isopropoxy-L-alaninyl)-phosphorochloridate to afford corresponding monophosphate prodrugs 24b-28b. All synthesized compounds were evaluated against several DNA and RNA viruses including HIV, HBV, HCV, Ebola and Zika viruses.

14.
J Biol Chem ; 289(2): 814-26, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24187139

ABSTRACT

Retinoid X receptors (RXRs) are obligate partners for several other nuclear receptors, and they play a key role in several signaling processes. Despite being a promiscuous heterodimer partner, this nuclear receptor is a target of therapeutic intervention through activation using selective RXR agonists (rexinoids). Agonist binding to RXR initiates a large conformational change in the receptor that allows for coactivator recruitment to its surface and enhanced transcription. Here we reveal the structural and dynamical changes produced when a coactivator peptide binds to the human RXRα ligand binding domain containing two clinically relevant rexinoids, Targretin and 9-cis-UAB30. Our results show that the structural changes are very similar for each rexinoid and similar to those for the pan-agonist 9-cis-retinoic acid. The four structural changes involve key residues on helix 3, helix 4, and helix 11 that move from a solvent-exposed environment to one that interacts extensively with helix 12. Hydrogen-deuterium exchange mass spectrometry reveals that the dynamics of helices 3, 11, and 12 are significantly decreased when the two rexinoids are bound to the receptor. When the pan-agonist 9-cis-retinoic acid is bound to the receptor, only the dynamics of helices 3 and 11 are reduced. The four structural changes are conserved in all x-ray structures of the RXR ligand-binding domain in the presence of agonist and coactivator peptide. They serve as hallmarks for how RXR changes conformation and dynamics in the presence of agonist and coactivator to initiate signaling.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Naphthalenes/metabolism , Nuclear Receptor Coactivator 2/metabolism , Retinoid X Receptor alpha/metabolism , Tetrahydronaphthalenes/metabolism , Alitretinoin , Amino Acid Sequence , Bexarotene , Binding Sites , Crystallography, X-Ray , Fatty Acids, Unsaturated/chemistry , Humans , Ligands , Models, Molecular , Molecular Sequence Data , Molecular Structure , Naphthalenes/chemistry , Nuclear Receptor Coactivator 2/chemistry , Protein Binding , Protein Conformation , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Retinoid X Receptor alpha/chemistry , Tetrahydronaphthalenes/chemistry , Tretinoin/chemistry , Tretinoin/metabolism
16.
Biochem Biophys Res Commun ; 466(1): 28-32, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26301631

ABSTRACT

CXCR4 is a GPCR involved in leukocyte trafficking. Small molecule antagonists of the receptor may treat inflammatory disease, cancer and HIV. Here we probe the binding of a tetrahydroisoquinoline-based antagonist (TIQ-10) to CXCR4 using saturation transfer double-difference (STDD) NMR. STDD spectra were acquired using extracts from Chinese Hamster Ovary cells expressing membrane-embedded CXCR4. The experiments demonstrate competitive binding between TIQ-10 and established antagonists and provide the TIQ-10 - CXCR4 binding epitope. Molecular modeling of TIQ-10 into the binding pocket provides a pose consistent with STDD-derived interactions. This study paves the way for future investigations of GPCR-ligand interactions in a biological milieu for use in chemical biology, biochemistry, structural biology, and rational drug design.


Subject(s)
Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/pharmacology , Animals , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Receptors, CXCR4/chemistry
17.
Chembiochem ; 15(11): 1614-20, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24990206

ABSTRACT

The CXC chemokine receptor 4 (CXCR4) is involved in chemotaxis and serves as a coreceptor for T-tropic HIV-1 viral entry, thus making this receptor an attractive drug target. Recently, crystal structures of CXCR4 were reported as complexes with the small molecule IT1t and the CVX15 peptide. Follow-up efforts to model different antagonists into the small molecule CXCR4:IT1t crystal structure did not generate poses consistent with either the X-ray crystal structure or site-directed mutagenesis (SDM). Here, we compare the binding pockets of the two CXCR4 crystal structures, revealing differences in helices IV, V, VI, and VII, with major differences for the His203 residue buried in the binding pocket. The small molecule antagonist AMD11070 was docked into both CXCR4 crystal structures. An AMD11070 pose identified from the CXCR4:CVX15 model presented interactions with Asp171, Glu288, Trp94, and Asp97, consistent with published SDM data, thus suggesting it is the bioactive pose. A CXCR4 receptor model was optimized around this pose of AMD11070, and the resulting model correlated HIV-1 inhibition with MM-GBSA docking scores for a congeneric AMD11070-like series. Subsequent NAMFIS NMR results successfully linked the proposed binding pose to an independent experimental structure. These results strongly suggest that not all small molecules will bind to CXCR4 in a similar manner as IT1t. Instead, the CXCR4:CVX15 crystal structure may provide a binding locus for small organic molecules that is more suitable than the secondary IT1t site. This work is expected to provide modeling insights useful for future CXCR4 antagonist and X4-tropic HIV-1 based drug design efforts.


Subject(s)
Anti-HIV Agents/pharmacology , Heterocyclic Compounds, 1-Ring/pharmacology , Peptides/antagonists & inhibitors , Receptors, CXCR4/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Aminoquinolines , Anti-HIV Agents/chemistry , Benzimidazoles , Binding Sites/drug effects , Butylamines , Crystallography, X-Ray , Heterocyclic Compounds, 1-Ring/chemistry , Models, Molecular , Molecular Structure , Peptides/chemistry , Peptides/metabolism , Receptors, CXCR4/chemistry , Receptors, CXCR4/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship
18.
J Immunother Cancer ; 12(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39038918

ABSTRACT

BACKGROUND: Toll-like receptor 9 (TLR9) agonists induce inflammatory responses that promote the killing of infectious micro-organisms, cancer cells and develop adaptive immune responses. Their ability as immunomodulators to enhance the activity of checkpoint inhibitors (CPI) in treating liver tumors is limited in part by the distinctive biology of intrahepatic myeloid-derived suppressor cells (MDSC) and challenges with tumor-specific therapeutic delivery. We have shown that the regional delivery of type C TLR9 agonist via pressure-enabled drug delivery (PEDD) system improves delivery to the tumor, enhances depletion of MDSCs and overall, stimulates the immune system in combination with or without CPI. Currently, CPIs are delivered intravenously, although there is a growing interest in its subcutaneous (SQ) administration. We compared nelitolimod formerly known as SD-101 administered using PEDD in combination with systemic (Sys) or SQ CPI in murine liver metastases (LM). METHODS: The LM model was developed by injecting MC38-Luc cells via the spleen of 8-12 week old male C57/BL6 mice followed by splenectomy. After a week, fluorescently labeled nelitolimod (10 µg/mouse) was delivered via PEDD and co-administered anti-programmed cell death-1 (α-PD-1) either via Sys or SQ. Tumor burden was monitored by in vivo imaging system. Serum cytokine levels were analyzed by Luminex. Tissues were harvested on Day 3 (D3) or Day 10 (D10) post-PEDD to enrich CD45+ cells and were analyzed via NanoString targeted transcriptomics (D3) or flow cytometry (FC, D10) to interrogate immune cell populations (D10). For NanoString analysis, the innate immune panels were selected, and for FC, MDSCs (CD11b+Gr1+), B cells (B220+), dendritic cells (DC, CD11c+), T (CD3+) cells, and M1-like macrophages (F4/80+CD38+Egr2-) were quantified. RESULTS: Nelitolimod delivered via PEDD resulted in changes in innate and adaptive immune cells within LM, including depletion of liver MDSC and increased M1-like macrophages in the liver, which are supportive of antitumor immunity. While CPI monotherapy failed to control tumor progression, nelitolimod and CPI combination improved LM control, survival and antitumor immunity beyond the nelitolimod monotherapy effect, irrespective of CPI delivery route. CONCLUSION: The SQ route of CPI delivery was equivalent to Sys in combination with nelitolimod, suggesting SQ-CPI may be a rational choice in combination with PEDD of nelitolimod for liver tumor treatment.


Subject(s)
Immune Checkpoint Inhibitors , Liver Neoplasms , Myeloid-Derived Suppressor Cells , Animals , Mice , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/secondary , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Humans , Drug Delivery Systems , Mice, Inbred C57BL , Cell Line, Tumor
19.
Drug Target Insights ; 17: 101-109, 2023.
Article in English | MEDLINE | ID: mdl-37811195

ABSTRACT

Introduction: Antibiotic-resistant Pseudomonas aeruginosa strains cause considerable morbidity and mortality globally. Identification of novel targets in this notorious pathogen is urgently warranted to facilitate discovery of new anti-pathogenic agents against it. This study attempted to identify small-molecule inhibitors of two important proteins LasR and nitric oxide reductase (NOR) in P. aeruginosa. 'Las' system can be said to be the 'master' regulator of quorum sensing in P. aeruginosa, whose receptor protein is LasR. Similarly, NOR is crucial to detoxification of reactive nitrogen species. Methods: In silico identification of potential LasR or NOR inhibitors was attempted through a virtual screening platform AtomNet® to obtain a final subset of <100 top scoring compounds. These compounds were evaluated for their in vivo anti-pathogenic activity by challenging the model host Caenorhabditis elegans with P. aeruginosa in the presence or absence of test compounds. Survival of the worm population in 24-well assay plates was monitored over a period of 5 days microscopically. Results: Of the 96 predicted LasR inhibitors, 11 exhibited anti-Pseudomonas activity (23%-96% inhibition of bacterial virulence as per third-day end-point) at 25-50 µg/mL. Of the 85 predicted NOR inhibitors, 8 exhibited anti-Pseudomonas activity (40%-85% inhibition of bacterial virulence as per second-day end-point) at 25-50 µg/mL. Conclusion: Further investigation on molecular mode of action of compounds found active in this study is warranted. Virtual screening can be said to be a useful tool in narrowing down the list of compounds requiring actual wet-lab screening, saving considerable time and efforts for drug discovery.

20.
Surgery ; 174(3): 666-673, 2023 09.
Article in English | MEDLINE | ID: mdl-37391328

ABSTRACT

BACKGROUND: Systemic immunotherapy has had limited clinical benefit in pancreatic ductal adenocarcinoma. This is thought to be due to its desmoplastic immunosuppressive tumor microenvironment in addition to high intratumoral pressures that limit drug delivery. Recent preclinical cancer models and early-phase clinical trials have demonstrated the potential of toll-like receptor 9 agonists, including the synthetic CpG oligonucleotide SD-101, to stimulate a wide range of immune cells and eliminate suppressive myeloid cells. We hypothesized that Pressure-Enabled Drug Delivery via Pancreatic Retrograde Venous Infusion of toll-like receptor 9 agonist would improve responsiveness to systemic anti-programmed death receptor-1 checkpoint inhibitor therapy in a murine orthotopic pancreatic ductal adenocarcinoma model. METHODS: Murine pancreatic ductal adenocarcinoma (KPC4580P) tumors were implanted into the pancreatic tails of C57BL/6J mice and treated 8 days after implantation. Mice were assigned to one of the following treatment groups: Pancreatic Retrograde Venous Infusion delivery of saline, Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist, systemic anti-programmed death receptor-1, systemic toll-like receptor 9 agonist, or the combination of Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist and systemic anti-programmed death receptor-1 (Combo). Fluorescently labeled toll-like receptor 9 agonist (radiant efficiency) was used to measure uptake of the drug on day 1. Changes in tumor burden were evaluated by necropsy at 2 different time points, 7 and 10 days after toll-like receptor 9 agonist treatment. Blood and tumors were collected at necropsy 10 days after toll-like receptor 9 agonist treatment for flow cytometric analysis of tumor-infiltrating leukocytes and plasma cytokines. RESULTS: All mice analyzed survived to necropsy. Site of tumor fluorescence measurements revealed 3-fold higher intensity fluorescence in Pancreatic Retrograde Venous Infusion delivery of toll-like receptor 9 agonist compared to systemic toll-like receptor 9 agonist mice. Tumor weights were significantly lower in the Combo group compared to Pancreatic Retrograde Venous Infusion delivery of saline. Flow cytometry of the Combo group demonstrated significantly increased overall T-cell number, specifically CD4+ T-cells, and a trend toward increased CD8+ T-cells. Cytokine analysis showed significantly decreased IL-6 and CXCL1. CONCLUSION: Pressure-Enabled Drug Delivery of toll-like receptor 9 agonist by Pancreatic Retrograde Venous Infusion with systemic anti-programmed death receptor-1 demonstrated improved pancreatic ductal adenocarcinoma tumor control in a murine pancreatic ductal adenocarcinoma model. These results support study of this combination therapy in pancreatic ductal adenocarcinoma patients and expansion of ongoing Pressure-Enabled Drug Delivery clinical trials.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Toll-Like Receptor 9/therapeutic use , Mice, Inbred C57BL , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Adjuvants, Immunologic/therapeutic use , Cytokines , Receptors, Death Domain , Tumor Microenvironment , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL