Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Ther ; 32(7): 2357-2372, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38751112

ABSTRACT

Natural killer (NK) cells have high intrinsic cytotoxic capacity, and clinical trials have demonstrated their safety and efficacy for adoptive cancer therapy. Expression of chimeric antigen receptors (CARs) enhances NK cell target specificity, with these cells applicable as off-the-shelf products generated from allogeneic donors. Here, we present for the first time an innovative approach for CAR NK cell engineering employing a non-viral Sleeping Beauty (SB) transposon/transposase-based system and minimized DNA vectors termed minicircles. SB-modified peripheral blood-derived primary NK cells displayed high and stable CAR expression and more frequent vector integration into genomic safe harbors than lentiviral vectors. Importantly, SB-generated CAR NK cells demonstrated enhanced cytotoxicity compared with non-transfected NK cells. A strong antileukemic potential was confirmed using established acute lymphocytic leukemia cells and patient-derived primary acute B cell leukemia and lymphoma samples as targets in vitro and in vivo in a xenograft leukemia mouse model. Our data suggest that the SB-transposon system is an efficient, safe, and cost-effective approach to non-viral engineering of highly functional CAR NK cells, which may be suitable for cancer immunotherapy of leukemia as well as many other malignancies.


Subject(s)
Genetic Vectors , Immunotherapy, Adoptive , Killer Cells, Natural , Receptors, Chimeric Antigen , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Mice , Genetic Vectors/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Xenograft Model Antitumor Assays , Transposases/genetics , Transposases/metabolism , Cell Line, Tumor , DNA Transposable Elements , Cytotoxicity, Immunologic , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Cell Engineering/methods
2.
Ann Hematol ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39237814

ABSTRACT

Patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT) face an elevated risk of infection-related mortality, particularly during the pre-engraftment period. Although systemic antibiotic prophylaxis (SAP) is commonly employed during neutropenia, it is linked to disruptions in the intestinal microbiome, increasing the risk of graft-versus-host disease (GVHD), Clostridium difficile infection (CDI), and colonization with multi-drug resistant (MDR) bacteria. In our retrospective analysis, we evaluated the safety and efficacy of an exclusively interventional antibiotic treatment (IAT) compared to SAP in adult alloHSCT patients. In comparison to SAP, IAT resulted in a significantly reduced duration of antibiotic therapy (24 vs. 18 days, p < 0.001), although the cumulative incidence (CI) of bloodstream infections (BSI) by day + 100 post-HSCT was significantly higher in the IAT group compared to SAP (40% vs. 13%, p < 0.001). However, this did not lead to a significant increase in ICU transfers (13% vs. 6%, p = ns) or a higher CI of non-relapse mortality (NRM) at 3 years (11% vs. 10%, p = ns). With a median follow-up of 1052 days, the 3-year overall survival (OS) rates were 69% and 66% for the SAP and IAT cohorts, respectively (p = ns). The CI of acute GVHD grade II-IV (30% vs. 39%) at 100 days or chronic GVHD of any grade (50% vs. 45%) at 3 years did not differ significantly between the SAP and IAT groups. There was a tendency towards a higher CI of severe chronic GVHD in the SAP cohort (28% vs. 13%, p = 0.08). Our single center experience in conducting alloHSCT without antibiotic prophylaxis but with stringent guidelines for prompt antibiotic intervention demonstrated no disadvantages in terms of OS and NRM. IAT led to significantly reduced consumption of cefotaxime, carbapenem, and glycopeptide antibiotics. In conclusion, our findings suggest that replacing SAP with the proposed IAT procedure is both safe and feasible.

3.
Eur J Immunol ; 52(7): 1194-1197, 2022 07.
Article in English | MEDLINE | ID: mdl-35389515

ABSTRACT

Little is known about the cellular immune response to SARS-CoV-2 vaccination in patients after HSCT and B-NHL with iatrogenic B-cell aplasia. In nonseroconverted HSCT patients, induction of specific T-cell responses was assessed. The majority of allogeneic HSCT patients not showing humoral responses to vaccination also fail to mount antigen-specific T-cell responses.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2 , T-Lymphocytes , Vaccination
4.
Ann Hematol ; 102(10): 2903-2908, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37552323

ABSTRACT

The addition of midostaurin to standard chemotherapy has improved survival in patients with FLT3-mutated AML. However, the impact of midostaurin and other FLT3 inhibitors (FLT3i) on cardiovascular adverse events (CAEs) has not been studied in patients who underwent allogeneic hematopoietic stem cell transplantation in a real-world setting. We reviewed 132 patients with AML who were treated with intensive induction therapy and consecutive allogeneic stem cell transplantation at our institution (42 FLT3-mutated AML and 90 with FLT3 wildtype). We identified treatment with midostaurin and/or FLT3i as an independent risk factor for CAEs not resulting in higher non-relapse mortality (NRM) or impaired overall survival (OS). Hence, close monitoring for CAEs is warranted for these patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Mutation , Staurosporine/adverse effects , Protein Kinase Inhibitors/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , fms-Like Tyrosine Kinase 3/genetics
5.
Br J Cancer ; 122(8): 1121-1123, 2020 04.
Article in English | MEDLINE | ID: mdl-32015509

ABSTRACT

Targeted protein degradation has emerged as a strategy in cancer therapy. Yang et al. discovered that HBX19818, an inhibitor of the deubiquitinase (DUB) USP10, leads to the dual degradation of spleen tyrosine kinase (SYK) and FLT3, resulting in death of AML cells.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Syk Kinase/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Humans , Leukemia, Myeloid, Acute/pathology
6.
J Intensive Care Med ; 34(11-12): 955-966, 2019.
Article in English | MEDLINE | ID: mdl-28718341

ABSTRACT

BACKGROUND: Computed tomography of the head (HCT) is a widely used diagnostic tool, especially for emergency and trauma patients. However, the diagnostic yield and outcomes of HCT for patients on medical intensive care units (MICUs) are largely unknown. METHODS: We retrospectively evaluated all head CTs from patients admitted to a single-center MICU during a 5-year period for CT indications, diagnostic yield, and therapeutic consequences. Uni- and multivariate analyses for the evaluation of risk factors for positive head CT were conducted. RESULTS: Six hundred ninety (18.8%) of all patients during a 5-year period underwent HCT; 78.7% had negative CT results, while 21.3% of all patients had at least 1 new pathological finding. The main indication for acquiring CT scan of the head was an altered mental state (AMS) in 23.5%, followed by a new focal neurology in 20.7% and an inadequate wake up after stopping sedation in 14.9% of all patients. The most common new finding was intracerebral bleeding in 6.4%. In 6.7%, the CT scan itself led to a change of therapy of any kind. Admission after resuscitation or a new focal neurology were independent predictors of a positive CT. Psychic alteration and AMS were both independent predictors of a higher chance of a negative head CT. Positive HCT during MICU is an independent predictor of lower survival. CONCLUSIONS: New onset of focal neurologic deficit seems to be a good predictor for a positive CT, while AMS and psychic alterations seem to be very poor predictors. A positive head CT is an independent predictor of death for MICU patients.


Subject(s)
Critical Care/statistics & numerical data , Critical Illness , Head/diagnostic imaging , Intensive Care Units/statistics & numerical data , Tomography, X-Ray Computed/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Databases, Factual , Female , Humans , Male , Middle Aged , Multivariate Analysis , Retrospective Studies , Risk Factors , Young Adult
7.
Blood ; 125(12): 1936-47, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25605370

ABSTRACT

Acute myeloid leukemia (AML) is driven by niche-derived and cell-autonomous stimuli. Although many cell-autonomous disease drivers are known, niche-dependent signaling in the context of the genetic disease heterogeneity has been difficult to investigate. Here, we analyzed the role of Bruton tyrosine kinase (BTK) in AML. BTK was frequently expressed, and its inhibition strongly impaired the proliferation and survival of AML cells also in the presence of bone marrow stroma. By interactome analysis, (phospho)proteomics, and transcriptome sequencing, we characterized BTK signaling networks. We show that BTK-dependent signaling is highly context dependent. In Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD)-positive AML, BTK mediates FLT3-ITD-dependent Myc and STAT5 activation, and combined targeting of FLT3-ITD and BTK showed additive effects. In Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD)-negative AML, BTK couples Toll-like receptor 9 (TLR9) activation to nuclear factor κΒ and STAT5. Both BTK-dependent transcriptional programs were relevant for cell cycle progression and apoptosis regulation. Thus, we identify context-dependent oncogenic driver events that may guide subtype-specific treatment strategies and, for the first time, point to a role of TLR9 in AML. Clinical evaluation of BTK inhibitors in AML seems warranted.


Subject(s)
Leukemia, Myeloid, Acute/immunology , Protein-Tyrosine Kinases/metabolism , Toll-Like Receptor 9/metabolism , fms-Like Tyrosine Kinase 3/metabolism , Adult , Agammaglobulinaemia Tyrosine Kinase , Apoptosis , Bone Marrow Cells/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Survival , Enzyme Activation , Gene Expression Regulation, Leukemic , Humans , Immunohistochemistry , Leukemia, Myeloid, Acute/metabolism , Mass Spectrometry , Middle Aged , NF-kappa B/metabolism , Phosphorylation , STAT5 Transcription Factor/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism , Tyrosine/chemistry , Young Adult
8.
Nat Cancer ; 3(5): 595-613, 2022 05.
Article in English | MEDLINE | ID: mdl-35534777

ABSTRACT

Acute myeloid leukemia (AML) remains difficult to treat and requires new therapeutic approaches. Potent inhibitors of the chromatin-associated protein MENIN have recently entered human clinical trials, opening new therapeutic opportunities for some genetic subtypes of this disease. Using genome-scale functional genetic screens, we identified IKAROS (encoded by IKZF1) as an essential transcription factor in KMT2A (MLL1)-rearranged (MLL-r) AML that maintains leukemogenic gene expression while also repressing pathways for tumor suppression, immune regulation and cellular differentiation. Furthermore, IKAROS displays an unexpected functional cooperativity and extensive chromatin co-occupancy with mixed lineage leukemia (MLL)1-MENIN and the regulator MEIS1 and an extensive hematopoietic transcriptional complex involving homeobox (HOX)A10, MEIS1 and IKAROS. This dependency could be therapeutically exploited by inducing IKAROS protein degradation with immunomodulatory imide drugs (IMiDs). Finally, we demonstrate that combined IKAROS degradation and MENIN inhibition effectively disrupts leukemogenic transcriptional networks, resulting in synergistic killing of leukemia cells and providing a paradigm for improved drug targeting of transcription and an opportunity for rapid clinical translation.


Subject(s)
Leukemia, Myeloid, Acute , Chromatin , Gene Expression , Humans , Ikaros Transcription Factor/metabolism , Leukemia, Myeloid, Acute/drug therapy , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Transcription Factors/genetics
9.
Cancer Cell ; 40(3): 301-317.e12, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35245447

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis. We report a comprehensive proteogenomic analysis of bone marrow biopsies from 252 uniformly treated AML patients to elucidate the molecular pathophysiology of AML in order to inform future diagnostic and therapeutic approaches. In addition to in-depth quantitative proteomics, our analysis includes cytogenetic profiling and DNA/RNA sequencing. We identify five proteomic AML subtypes, each reflecting specific biological features spanning genomic boundaries. Two of these proteomic subtypes correlate with patient outcome, but none is exclusively associated with specific genomic aberrations. Remarkably, one subtype (Mito-AML), which is captured only in the proteome, is characterized by high expression of mitochondrial proteins and confers poor outcome, with reduced remission rate and shorter overall survival on treatment with intensive induction chemotherapy. Functional analyses reveal that Mito-AML is metabolically wired toward stronger complex I-dependent respiration and is more responsive to treatment with the BCL2 inhibitor venetoclax.


Subject(s)
Leukemia, Myeloid, Acute , Proteogenomics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Proteomics
10.
Cancer Discov ; 11(6): 1424-1439, 2021 06.
Article in English | MEDLINE | ID: mdl-33563661

ABSTRACT

Despite a remarkable increase in the genomic profiling of cancer, integration of genomic discoveries into clinical care has lagged behind. We report the feasibility of rapid identification of targetable mutations in 153 pediatric patients with relapsed/refractory or high-risk leukemias enrolled on a prospective clinical trial conducted by the LEAP Consortium. Eighteen percent of patients had a high confidence Tier 1 or 2 recommendation. We describe clinical responses in the 14% of patients with relapsed/refractory leukemia who received the matched targeted therapy. Further, in order to inform future targeted therapy for patients, we validated variants of uncertain significance, performed ex vivo drug-sensitivity testing in patient leukemia samples, and identified new combinations of targeted therapies in cell lines and patient-derived xenograft models. These data and our collaborative approach should inform the design of future precision medicine trials. SIGNIFICANCE: Patients with relapsed/refractory leukemias face limited treatment options. Systematic integration of precision medicine efforts can inform therapy. We report the feasibility of identifying targetable mutations in children with leukemia and describe correlative biology studies validating therapeutic hypotheses and novel mutations.See related commentary by Bornhauser and Bourquin, p. 1322.This article is highlighted in the In This Issue feature, p. 1307.


Subject(s)
Leukemia/drug therapy , Neoplasm Recurrence, Local/drug therapy , Biomarkers, Tumor/genetics , Child , Cohort Studies , Disease Progression , Feasibility Studies , Female , Humans , Leukemia/genetics , Leukemia/mortality , Male , Molecular Targeted Therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Prospective Studies , United States
11.
Cancer Discov ; 10(2): 214-231, 2020 02.
Article in English | MEDLINE | ID: mdl-31771968

ABSTRACT

Spleen tyrosine kinase (SYK) is a nonmutated therapeutic target in acute myeloid leukemia (AML). Attempts to exploit SYK therapeutically in AML have shown promising results in combination with chemotherapy, likely reflecting induced mechanisms of resistance to single-agent treatment in vivo. We conducted a genome-scale open reading frame (ORF) resistance screen and identified activation of the RAS-MAPK-ERK pathway as one major mechanism of resistance to SYK inhibitors. This finding was validated in AML cell lines with innate and acquired resistance to SYK inhibitors. Furthermore, patients with AML with select mutations activating these pathways displayed early resistance to SYK inhibition. To circumvent SYK inhibitor therapy resistance in AML, we demonstrate that a MEK and SYK inhibitor combination is synergistic in vitro and in vivo. Our data provide justification for use of ORF screening to identify resistance mechanisms to kinase inhibitor therapy in AML lacking distinct mutations and to direct novel combination-based strategies to abrogate these. SIGNIFICANCE: The integration of functional genomic screening with the study of mechanisms of intrinsic and acquired resistance in model systems and human patients identified resistance to SYK inhibitors through MAPK signaling in AML. The dual targeting of SYK and the MAPK pathway offers a combinatorial strategy to overcome this resistance.This article is highlighted in the In This Issue feature, p. 161.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm/genetics , Leukemia, Myeloid, Acute/drug therapy , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Syk Kinase/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzamides/pharmacology , Benzamides/therapeutic use , Cell Line, Tumor , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Diphenylamine/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Gene Expression Regulation, Leukemic/drug effects , Humans , Indazoles/pharmacology , Indazoles/therapeutic use , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutagenesis, Site-Directed , Mutation , Open Reading Frames/genetics , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyrazines/pharmacology , Pyrazines/therapeutic use , Syk Kinase/metabolism , Xenograft Model Antitumor Assays
12.
J Med Chem ; 62(5): 2428-2446, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30742435

ABSTRACT

The use of covalent irreversible binding inhibitors is an established concept for drug development. Usually, the discovery of new irreversible kinase inhibitors occurs serendipitously, showing that efficient rational approaches for the rapid discovery of new drugs are needed. Herein, we report a virtual screening strategy that led to the discovery of irreversible inhibitors of FMS-like tyrosine kinase 3 (FLT3) involved in the pathogenesis of acute myeloid leukemia. A virtual screening library was designed to target the highly conserved Cys828 residue preceding the DFG motif by modification of reported reversible inhibitors with chemically reactive groups. Prospective covalent docking allowed the identification of two lead series, resulting in a massive increase in inhibition of kinase activity and cell viability by irreversible inhibitors compared to the corresponding reversible scaffolds. Lead compound 4b (BSc5371) displays superior cytotoxicity in FLT3-dependent cell lines to compounds in recent clinical trials and overcomes drug-resistant mutations.


Subject(s)
High-Throughput Screening Assays/methods , Mutation , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Embryo, Nonmammalian/drug effects , Humans , Molecular Docking Simulation , Prospective Studies , Protein Kinase Inhibitors/toxicity , Zebrafish/embryology
14.
Cancer Cell ; 31(4): 549-562.e11, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28399410

ABSTRACT

The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.


Subject(s)
Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/genetics , Neoplasm Proteins/metabolism , Syk Kinase/metabolism , Animals , Gene Expression Regulation, Leukemic , Homeodomain Proteins/genetics , Humans , Integrin beta3/metabolism , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Mice, Inbred C57BL , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Proteins/genetics , Signal Transduction , Syk Kinase/genetics
15.
Nat Med ; 23(2): 250-255, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27991919

ABSTRACT

The nucleoside analog cytarabine (Ara-C) is an essential component of primary and salvage chemotherapy regimens for acute myeloid leukemia (AML). After cellular uptake, Ara-C is converted into its therapeutically active triphosphate metabolite, Ara-CTP, which exerts antileukemic effects, primarily by inhibiting DNA synthesis in proliferating cells. Currently, a substantial fraction of patients with AML fail to respond effectively to Ara-C therapy, and reliable biomarkers for predicting the therapeutic response to Ara-C are lacking. SAMHD1 is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase that cleaves physiological dNTPs into deoxyribonucleosides and inorganic triphosphate. Although it has been postulated that SAMHD1 sensitizes cancer cells to nucleoside-analog derivatives through the depletion of competing dNTPs, we show here that SAMHD1 reduces Ara-C cytotoxicity in AML cells. Mechanistically, dGTP-activated SAMHD1 hydrolyzes Ara-CTP, which results in a drastic reduction of Ara-CTP in leukemic cells. Loss of SAMHD1 activity-through genetic depletion, mutational inactivation of its triphosphohydrolase activity or proteasomal degradation using specialized, virus-like particles-potentiates the cytotoxicity of Ara-C in AML cells. In mouse models of retroviral AML transplantation, as well as in retrospective analyses of adult patients with AML, the response to Ara-C-containing therapy was inversely correlated with SAMHD1 expression. These results identify SAMHD1 as a potential biomarker for the stratification of patients with AML who might best respond to Ara-C-based therapy and as a target for treating Ara-C-refractory AML.


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Cytarabine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Monomeric GTP-Binding Proteins/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cytarabine/administration & dosage , Cytarabine/pharmacology , Daunorubicin/administration & dosage , Disease Models, Animal , Female , Flow Cytometry , Humans , Immunoblotting , Leukemia, Myeloid, Acute/metabolism , Male , Middle Aged , Prognosis , Retrospective Studies , SAM Domain and HD Domain-Containing Protein 1 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL