Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mediators Inflamm ; 2020: 8635158, 2020.
Article in English | MEDLINE | ID: mdl-32454796

ABSTRACT

Extracellular matrix metalloproteinases (MMPs) are a group of proteins that activate substrates by enzymatic cleavage and, on the basis of their activities, have been demonstrated to play a role in ageing. Thus, in order to gain insight into the pathophysiology of ageing and to identify new markers of longevity, we analysed the activity levels of MMP-2 and MMP-9 in association with some relevant haematochemical parameters in a Sicilian population, including long-living individuals (LLIs, ≥95 years old). A cohort of 154 healthy subjects (72 men and 82 women) of different ages (age range 20-112) was recruited. The cohort was divided into five subgroups: the first group with subjects less than 40 years old, the second group ranging from 40 to 64 years old, the third group ranging from 65 to 89 years old, the fourth group ranging from 90 to 94 years old, and the fifth group with subjects more than 95 years old. A relationship was observed between LLIs and MMP-2, but not between LLIs and MMP-9. However, in the LLI group, MMP-2 and MMP-9 values were significantly correlated. Furthermore, in LLIs, we found a positive correlation of MMP-2 with the antioxidant catabolite uric acid and a negative correlation with the inflammatory marker C-reactive protein. Finally, in LLIs MMP-9 values correlated directly both with cholesterol and with low-density lipoproteins. On the whole, our data suggest that the observed increase of MMP-2 in LLIs might play a positive role in the attainment of longevity. This is the first study that shows that serum activity of MMP-2 is increased in LLIs as compared to younger subjects. As far as we are concerned, it is difficult to make wide-ranging conclusions/assumptions based on these observations in view of the relatively small sample size of LLIs. However, this is an important starting point. Larger-scale future studies will be required to clarify these findings including the link with other systemic inflammatory and antioxidant markers.


Subject(s)
Aging , Gene Expression Regulation, Enzymologic , Longevity , Matrix Metalloproteinase 2/physiology , Matrix Metalloproteinase 9/physiology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Sicily , Young Adult
2.
Antioxidants (Basel) ; 9(4)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326575

ABSTRACT

:Obesity has been associated with neurodegeneration and cognitive dysfunctions. Recent data showed that pistachio consumption is able to prevent and ameliorate dyslipidemia, hepatic steatosis, systemic and adipose tissue inflammation in mice fed a high-fat diet (HFD). The present study investigated the neuroprotective effects of pistachio intake in HFD mice. Three groups of mice were fed a standard diet (STD), HFD, or HFD supplemented with pistachio (HFD-P) for 16 weeks. Metabolic parameters (oxidative stress, apoptosis, and mitochondrial dysfunction) were analyzed by using specific assays and biomarkers. The pistachio diet significantly reduced the serum levels of triglycerides and cholesterol in the HFD model. No difference was observed in the index of insulin resistance between HFD and HFD-P. A higher number of fragmented nuclei were found in HFD cerebral cortex compared to STD and HFD-P. A decrease in reactive oxygen species, singlet oxygen and phosphorylated extracellular signal-regulated kinase, and an increase of superoxide dismutase 2 and heme oxygenase expression were found in the brains of the HFD-P samples compared to HFD. Furthermore, the impaired mitochondrial function found in HFD brain was partially recovered in HFD-P mice. These results suggest that the regular intake of pistachio may be useful in preventing obesity-related neurodegeneration, being able to reduce both metabolic and cellular dysfunctions.

3.
Curr Pharm Des ; 25(39): 4163-4167, 2019.
Article in English | MEDLINE | ID: mdl-31713478

ABSTRACT

Aging is characterized by a general decline in a range of physiological functions, with a consequent increase in the risk of developing a variety of chronic diseases and geriatric syndromes. Additionally, increasing age is accompanied by a progressive decline in both innate and acquired immune system, referred to as immunosenescence. This impaired ability to mount an efficient immune response after exposure to microorganisms or vaccines represents a major challenge in acquiring protection against pathogens in aging. Therefore, there is still a great need for vaccines that are tailored to optimally stimulate the aged immune system, thus promoting more successful aging. Various strategies can be used to improve vaccine efficacy in old people. Despite this, metaanalyses have clearly shown that the magnitude of protection obtained remains lower in older adults. Recent studies show that stimulation of Toll-like receptors, using stimulatory ligands, can enhance vaccine efficacy by a number of mechanisms, including the activation of innate immune cells and the consequent production of inflammatory cytokines. Therefore, a possible strategy for more effective vaccination in the older population is the triggering of multiple TLRs, using a combined adjuvant for the synergistic activation of cellular immunity. Preliminary in vitro data suggest that in humans the presence of multiple TLR agonists can result in the greater stimulation of antigen-specific immune responses in immune cells both in the young healthy and in the immune senescent older donors. These data suggest that appropriately selected combinations of TLR agonists could enhance the efficacy of vaccination mediated immunity in older people.


Subject(s)
Aging/immunology , Toll-Like Receptors/agonists , Toll-Like Receptors/immunology , Vaccination , Adjuvants, Immunologic/administration & dosage , Aged , Aged, 80 and over , Cytokines/immunology , Humans , Immunity, Cellular
4.
Curr Pharm Des ; 25(3): 228-235, 2019.
Article in English | MEDLINE | ID: mdl-30864497

ABSTRACT

BACKGROUND: It is well known that long living individuals are a model of successful ageing and that the identification of both genetic variants and environmental factors that predispose to a long and healthy life is of tremendous interest for translational medicine. METHODS: We present the preliminary findings obtained from an ongoing study on longevity conducted on a sample of Sicilian long-lived individuals. RESULTS: We review the characteristics of longevity in Sicily, taking into account lifestyle, environment, genetics, hematochemical values, body composition and immunophenotype. In addition, we discuss the possible implications of our data for the prevention and/or treatment of age-related diseases. CONCLUSION: As widely discussed in this review, the explanation of the role of genetics and lifestyle in longevity can provide important information on how to develop drugs and/or behaviours that can slow down or delay ageing. Thus, it will be possible to understand, through a "positive biology" approach, how to prevent and/or reduce elderly frailty and disability.


Subject(s)
Aging , Life Style , Longevity/genetics , Genotype , Humans , Phenotype , Sicily , Surveys and Questionnaires
5.
Biomaterials ; 80: 179-194, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26708643

ABSTRACT

A growing body of evidence shows the protective role of insulin in Alzheimer's disease (AD). A nanogel system (NG) to deliver insulin to the brain, as a tool for the development of a new therapy for Alzheimer's Disease (AD), is designed and synthetized. A carboxyl-functionalized poly(N-vinyl pyrrolidone) nanogel system produced by ionizing radiation is chosen as substrate for the covalent attachment of insulin or fluorescent molecules relevant for its characterization. Biocompatibility and hemocompatibility of the naked carrier is demonstrated. The insulin conjugated to the NG (NG-In) is protected by protease degradation and able to bind to insulin receptor (IR), as demonstrated by immunofluorescence measurements showing colocalization of NG-In(FITC) with IR. Moreover, after binding to the receptor, NG-In is able to trigger insulin signaling via AKT activation. Neuroprotection of NG-In against dysfunction induced by amyloid ß (Aß), a peptide mainly involved in AD, is verified. Finally, the potential of NG-In to be efficiently transported across the Blood Brain Barrier (BBB) is demonstrated. All together these results indicate that the synthesized NG-In is a suitable vehicle system for insulin deliver in biomedicine and a very promising tool to develop new therapies for neurodegenerative diseases.


Subject(s)
Alzheimer Disease/drug therapy , Drug Carriers/chemistry , Insulin/administration & dosage , Povidone/chemistry , Alzheimer Disease/metabolism , Animals , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Drug Delivery Systems , Humans , Insulin/pharmacokinetics , Insulin/pharmacology , Mice, Inbred C57BL , Nanostructures/chemistry , Nanostructures/radiation effects , Nanotechnology/methods , Radiation, Ionizing , Receptor, Insulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL