Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 17(11): 1273-1281, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27595232

ABSTRACT

Siglec-9 is a sialic-acid-binding lectin expressed predominantly on myeloid cells. Aberrant glycosylation occurs in essentially all types of cancers and results in increased sialylation. Thus, when the mucin MUC1 is expressed on cancer cells, it is decorated by multiple short, sialylated O-linked glycans (MUC1-ST). Here we found that this cancer-specific MUC1 glycoform, through engagement of Siglec-9, 'educated' myeloid cells to release factors associated with determination of the tumor microenvironment and disease progression. Moreover, MUC1-ST induced macrophages to display a tumor-associated macrophage (TAM)-like phenotype, with increased expression of the checkpoint ligand PD-L1. Binding of MUC1-ST to Siglec-9 did not activate the phosphatases SHP-1 or SHP-2 but, unexpectedly, induced calcium flux that led to activation of the kinases MEK-ERK. This work defines a critical role for aberrantly glycosylated MUC1 and identifies an activating pathway that follows engagement of Siglec-9.


Subject(s)
Antigens, CD/metabolism , Mucin-1/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Tumor Microenvironment/immunology , Antigens, CD/genetics , Biomarkers , Cell Differentiation , Cell Line , Dendritic Cells/immunology , Dendritic Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression , Glycosylation , Humans , Macrophages/immunology , Macrophages/metabolism , Mitogen-Activated Protein Kinases/metabolism , Myeloid Cells/cytology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/genetics , Neoplasms/pathology , Phenotype , Protein Binding , Sialic Acid Binding Immunoglobulin-like Lectins/genetics
2.
Immunity ; 43(1): 187-99, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26200014

ABSTRACT

The role of intestinal eosinophils in immune homeostasis is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown. Most commonly associated with Th2 cell-mediated diseases, we describe a role for eosinophils as crucial effectors of the interleukin-23 (IL-23)-granulocyte macrophage colony-stimulating factor (GM-CSF) axis in colitis. Chronic intestinal inflammation was characterized by increased bone marrow eosinopoiesis and accumulation of activated intestinal eosinophils. IL-5 blockade or eosinophil depletion ameliorated colitis, implicating eosinophils in disease pathogenesis. GM-CSF was a potent activator of eosinophil effector functions and intestinal accumulation, and GM-CSF blockade inhibited chronic colitis. By contrast neutrophil accumulation was GM-CSF independent and dispensable for colitis. In addition to TNF secretion, release of eosinophil peroxidase promoted colitis identifying direct tissue-toxic mechanisms. Thus, eosinophils are key perpetrators of chronic inflammation and tissue damage in IL-23-mediated immune diseases and it suggests the GM-CSF-eosinophil axis as an attractive therapeutic target.


Subject(s)
Colitis/immunology , Eosinophils/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Interleukin-23 Subunit p19/immunology , Animals , Cell Movement/immunology , Cytokine Receptor Common beta Subunit/genetics , Eosinophil Peroxidase/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Inflammation/immunology , Interleukin-5/antagonists & inhibitors , Intestines/cytology , Intestines/immunology , Intestines/pathology , Leukocyte Reduction Procedures , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Tumor Necrosis Factors/metabolism
3.
Glycoconj J ; 40(2): 213-223, 2023 04.
Article in English | MEDLINE | ID: mdl-36738392

ABSTRACT

Sialoadhesin (CD169/Siglec-1, Sn) is a macrophage receptor that interacts with sialic acids on both host cells and pathogens. It is a type 1 membrane protein with an unusually large number of 17 extracellular immunoglobulin (Ig)-like domains, made up of an N-terminal V-set domain that binds sialic acid and 16 adjacent C2-set domains. The potential importance of 17 Ig domains in Sn for mediating cellular interactions has not been investigated experimentally. In the present study, Chinese Hamster Ovary (CHO) cells were stably transfected with full-length or truncated forms of Sn. Using human red blood cells (RBC) as a model system, CHO cells expressing truncated forms of Sn with 4 or less Ig domains were unable to bind RBC in comparison to the full-length protein. Immunoelectron microscopy of the CHO cells indicated that full-length Sn extends ~ 33 nm from the plasma membrane compared with ~ 14 nm for a truncated form with 6 N-terminal Ig domains. Co-expresssion of Sn-expressing CHO cells with heavily glycosylated membrane proteins of differing predicted lengths resulted in selective modulation of Sn-dependent binding to RBC and supported the hypothesis that Sn has evolved 17 Ig domains to escape inhibitory cis-interactions. The functional significance of the extended length of Sn was demonstrated in experiments with macrophages showing that Sn synergizes with phagocytic receptors FcR and TIM-4 to strongly promote uptake of IgG-opsonized and eryptotic RBC respectively.


Subject(s)
Macrophages , Sialic Acid Binding Ig-like Lectin 1 , Animals , Cricetinae , Humans , CHO Cells , Cricetulus , Macrophages/metabolism , Phagocytosis , Sialic Acid Binding Ig-like Lectin 1/metabolism
4.
Glycobiology ; 31(1): 44-54, 2021 01 09.
Article in English | MEDLINE | ID: mdl-32501471

ABSTRACT

Siglec-15 is a conserved sialic acid-binding Ig-like lectin expressed on osteoclast progenitors, which plays an important role in osteoclast development and function. It is also expressed by tumor-associated macrophages and by some tumors, where it is thought to contribute to the immunosuppressive microenvironment. It was shown previously that engagement of macrophage-expressed Siglec-15 with tumor cells expressing its ligand, sialyl Tn (sTn), triggered production of TGF-ß. In the present study, we have further investigated the interaction between Siglec-15 and sTn on tumor cells and its functional consequences. Based on binding assays with lung and breast cancer cell lines and glycan-modified cells, we failed to see evidence for recognition of sTn by Siglec-15. However, using a microarray of diverse, structurally defined glycans, we show that Siglec-15 binds with higher avidity to sialylated glycans other than sTn or related antigen sequences. In addition, we were unable to demonstrate enhanced TGF-ß secretion following co-culture of Siglec-15-expressing monocytic cell lines with tumor cells expressing sTn or following Siglec-15 cross-linking with monoclonal antibodies. However, we did observe activation of the SYK/MAPK signaling pathway following antibody cross-linking of Siglec-15 that may modulate the functional activity of macrophages.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/metabolism , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Polysaccharides/metabolism , Sialic Acids/metabolism , Antigens, Tumor-Associated, Carbohydrate/chemistry , Antigens, Tumor-Associated, Carbohydrate/genetics , Coculture Techniques , Humans , Immunoglobulins/chemistry , Immunoglobulins/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Polysaccharides/chemistry , Sialic Acids/chemistry , Tumor Cells, Cultured
5.
J Biomed Sci ; 28(1): 5, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33397354

ABSTRACT

BACKGROUND: The accumulation of lipid-laden macrophages, foam cells, within sub-endothelial intima is a key feature of early atherosclerosis. Siglec-E, a mouse orthologue of human Siglec-9, is a sialic acid binding lectin predominantly expressed on the surface of myeloid cells to transduce inhibitory signal via recruitment of SH2-domain containing protein tyrosine phosphatase SHP-1/2 upon binding to its sialoglycan ligands. Whether Siglec-E expression on macrophages impacts foam cell formation and atherosclerosis remains to be established. METHODS: ApoE-deficient (apoE-/-) and apoE/Siglec-E-double deficient (apoE-/-/Siglec-E-/-) mice were placed on high fat diet for 3 months and their lipid profiles and severities of atherosclerosis were assessed. Modified low-density lipoprotein (LDL) uptake and foam cell formation in wild type (WT) and Siglec-E-/-- peritoneal macrophages were examined in vitro. Potential Siglec-E-interacting proteins were identified by proximity labeling in conjunction with proteomic analysis and confirmed by coimmunoprecipitation experiment. Impacts of Siglec-E expression and cell surface sialic acid status on oxidized LDL uptake and signaling involved were examined by biochemical assays. RESULTS: Here we show that genetic deletion of Siglec-E accelerated atherosclerosis without affecting lipid profile in apoE-/- mice. Siglec-E deficiency promotes foam cell formation by enhancing acetylated and oxidized LDL uptake without affecting cholesterol efflux in macrophages in vitro. By performing proximity labeling and proteomic analysis, we identified scavenger receptor CD36 as a cell surface protein interacting with Siglec-E. Further experiments performed in HEK293T cells transiently overexpressing Siglec-E and CD36 and peritoneal macrophages demonstrated that depletion of cell surface sialic acids by treatment with sialyltransferase inhibitor or sialidase did not affect interaction between Siglec-E and CD36 but retarded Siglec-E-mediated inhibition on oxidized LDL uptake. Subsequent experiments revealed that oxidized LDL induced transient Siglec-E tyrosine phosphorylation and recruitment of SHP-1 phosphatase in macrophages. VAV, a downstream effector implicated in CD36-mediated oxidized LDL uptake, was shown to interact with SHP-1 following oxidized LDL treatment. Moreover, oxidized LDL-induced VAV phosphorylation was substantially lower in WT macrophages comparing to Siglec-E-/- counterparts. CONCLUSIONS: These data support the protective role of Siglec-E in atherosclerosis. Mechanistically, Siglec-E interacts with CD36 to suppress downstream VAV signaling involved in modified LDL uptake.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/genetics , CD36 Antigens/metabolism , Foam Cells/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/pharmacology , Animals , Atherosclerosis/metabolism , Mice
6.
Chembiochem ; 21(1-2): 129-140, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31095840

ABSTRACT

CD22 (Siglec-2) is a B-cell surface inhibitory protein capable of selectively recognising sialylated glycans, thus dampening autoimmune responses against self-antigens. Here we have characterised the dynamic recognition of complex-type N-glycans by human CD22 by means of orthogonal approaches including NMR spectroscopy, computational methods and biophysical assays. We provide new molecular insights into the binding mode of sialoglycans in complex with h-CD22, highlighting the role of the sialic acid galactose moieties in the recognition process, elucidating the conformational behaviour of complex-type N-glycans bound to Siglec-2 and dissecting the formation of CD22 homo-oligomers on the B-cell surface. Our results could enable the development of additional therapeutics capable of modulating the activity of h-CD22 in autoimmune diseases and malignancies derived from B-cells.


Subject(s)
Molecular Dynamics Simulation , Polysaccharides/chemistry , Sialic Acid Binding Ig-like Lectin 2/chemistry , B-Lymphocytes/chemistry , Carbohydrate Conformation , Galactose/chemistry , Humans
7.
J Virol ; 92(3)2018 02 01.
Article in English | MEDLINE | ID: mdl-29142134

ABSTRACT

Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169+ cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169+ cells during viral infections remain unclear. Here, we show that tumor necrosis factor is produced by CD11b+ Ly6C+ Ly6G+ cells following infection with VSV. The absence of TNF or TNF receptor 1 (TNFR1) resulted in reduced numbers of CD169+ cells and in reduced type I interferon (IFN-I) production during VSV infection, with a severe disease outcome. Specifically, TNF triggered RelA translocation into the nuclei of CD169+ cells; this translocation was inhibited when the paracaspase MALT-1 was absent. Consequently, MALT1 deficiency resulted in reduced VSV replication, defective innate immune activation, and development of severe disease. These findings indicate that TNF mediates the maintenance of CD169+ cells and innate and adaptive immune activation during VSV infection.IMPORTANCE Over the last decade, strategically placed CD169+ metallophilic macrophages in the marginal zone of the murine spleen and lymph nodes (LN) have been shown to play a very important role in host defense against viral pathogens. CD169+ macrophages have been shown to activate innate and adaptive immunity via "enforced virus replication," a controlled amplification of virus particles. However, the factors regulating the CD169+ macrophages remain to be studied. In this paper, we show that after vesicular stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF), which signals via TNFR1, and promote enforced virus replication in CD169+ macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance.


Subject(s)
Interferon Type I/immunology , Macrophages/immunology , Tumor Necrosis Factor-alpha/immunology , Vesicular Stomatitis/immunology , Adaptive Immunity , Animals , Immunity, Innate , Macrophages/virology , Mice , Mice, Inbred C57BL , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Receptors, Tumor Necrosis Factor, Type I/immunology , Sialic Acid Binding Ig-like Lectin 1 , Transcription Factor RelA/metabolism , Vesiculovirus/physiology , Virus Replication
8.
Proc Natl Acad Sci U S A ; 113(12): 3329-34, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26941238

ABSTRACT

Sialic acids are negatively charged nine-carbon carboxylated monosaccharides that often cap glycans on glycosylated proteins and lipids. Because of their strategic location at the cell surface, sialic acids contribute to interactions that are critical for immune homeostasis via interactions with sialic acid-binding Ig-type lectins (siglecs). In particular, these interactions may be of importance in cases where sialic acids may be overexpressed, such as on certain pathogens and tumors. We now demonstrate that modification of antigens with sialic acids (Sia-antigens) regulates the generation of antigen-specific regulatory T (Treg) cells via dendritic cells (DCs). Additionally, DCs that take up Sia-antigen prevent formation of effector CD4(+) and CD8(+)T cells. Importantly, the regulatory properties endowed on DCs upon Sia-antigen uptake are antigen-specific: only T cells responsive to the sialylated antigen become tolerized. In vivo, injection of Sia-antigen-loaded DCs increased de novo Treg-cell numbers and dampened effector T-cell expansion and IFN-γ production. The dual tolerogenic features that Sia-antigen imposed on DCs are Siglec-E-mediated and maintained under inflammatory conditions. Moreover, loading DCs with Sia-antigens not only inhibited the function of in vitro-established Th1 and Th17 effector T cells but also significantly dampened ex vivo myelin-reactive T cells, present in the circulation of mice with experimental autoimmune encephalomyelitis. These data indicate that sialic acid-modified antigens instruct DCs in an antigen-specific tolerogenic programming, enhancing Treg cells and reducing the generation and propagation of inflammatory T cells. Our data suggest that sialylation of antigens provides an attractive way to induce antigen-specific immune tolerance.


Subject(s)
Adaptation, Physiological/immunology , Antigens/immunology , Cell Proliferation , N-Acetylneuraminic Acid/chemistry , T-Lymphocytes, Regulatory/immunology , Animals , Antigens/chemistry , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/cytology
9.
Proc Natl Acad Sci U S A ; 112(28): 8661-6, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26124096

ABSTRACT

Palmitoylated cysteines typically target transmembrane proteins to domains enriched in cholesterol and sphingolipids (lipid rafts). P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are O-glycosylated proteins on leukocytes that associate with lipid rafts. During inflammation, they transduce signals by engaging selectins as leukocytes roll in venules, and they move to the raft-enriched uropods of polarized cells upon chemokine stimulation. It is not known how these glycoproteins associate with lipid rafts or whether this association is required for signaling or for translocation to uropods. Here, we found that loss of core 1-derived O-glycans in murine C1galt1(-/-) neutrophils blocked raft targeting of PSGL-1, CD43, and CD44, but not of other glycosylated proteins, as measured by resistance to solubilization in nonionic detergent and by copatching with a raft-resident sphingolipid on intact cells. Neuraminidase removal of sialic acids from wild-type neutrophils also blocked raft targeting. C1galt1(-/-) neutrophils or neuraminidase-treated neutrophils failed to activate tyrosine kinases when plated on immobilized anti-PSGL-1 or anti-CD44 F(ab')2. Furthermore, C1galt1(-/-) neutrophils incubated with anti-PSGL-1 F(ab')2 did not generate microparticles. In marked contrast, PSGL-1, CD43, and CD44 moved normally to the uropods of chemokine-stimulated C1galt1(-/-) neutrophils. These data define a role for core 1-derived O-glycans and terminal sialic acids in targeting glycoprotein ligands for selectins to lipid rafts of leukocytes. Preassociation of these glycoproteins with rafts is required for signaling but not for movement to uropods.


Subject(s)
Leukocytes/metabolism , Membrane Glycoproteins/metabolism , Membrane Microdomains/metabolism , Polysaccharides/metabolism , Animals , Hyaluronan Receptors/metabolism , Leukosialin/metabolism , Ligands , Mice
10.
Nat Rev Immunol ; 7(4): 255-66, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17380156

ABSTRACT

Cell surfaces in the immune system are richly equipped with a complex mixture of glycans, which can be recognized by diverse glycan-binding proteins. The Siglecs are a family of sialic-acid-binding immunoglobulin-like lectins that are thought to promote cell-cell interactions and regulate the functions of cells in the innate and adaptive immune systems through glycan recognition. In this Review, we describe recent studies on signalling mechanisms and discuss the potential role of Siglecs in triggering endocytosis and in pathogen recognition. Finally, we discuss the postulated functions of the recently discovered CD33-related Siglecs and consider the factors that seem to be driving their rapid evolution.


Subject(s)
Cell Communication/immunology , Lectins/immunology , Signal Transduction/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Endocytosis , Humans , Lectins/chemistry , Lymphocyte Activation/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Protein Structure, Tertiary , Sialic Acid Binding Ig-like Lectin 2/immunology , Sialic Acid Binding Ig-like Lectin 2/metabolism , Sialic Acid Binding Ig-like Lectin 3 , Sialic Acid Binding Immunoglobulin-like Lectins
11.
Glia ; 65(12): 1927-1943, 2017 12.
Article in English | MEDLINE | ID: mdl-28836308

ABSTRACT

Several types of myeloid cell are resident in the CNS. In the steady state, microglia are present in the CNS parenchyma, whereas macrophages reside in boundary regions of the CNS, such as perivascular spaces, the meninges and choroid plexus. In addition, monocytes infiltrate into the CNS parenchyma from circulation upon blood-brain barrier breakdown after CNS injury and inflammation. Although several markers, such as CD11b and ionized calcium-binding adapter molecule 1 (Iba1), are frequently used as microglial markers, they are also expressed by other types of myeloid cell and microglia-specific markers were not defined until recently. Previous transcriptome analyses of isolated microglia identified a transmembrane lectin, sialic acid-binding immunoglobulin-like lectin H (Siglec-H), as a molecular signature for microglia; however, this was not confirmed by histological studies in the nervous system and the reliability of Siglec-H as a microglial marker remained unclear. Here, we demonstrate that Siglec-H is an authentic marker for microglia in mice by immunohistochemistry using a Siglec-H-specific antibody. Siglec-H was expressed by parenchymal microglia from developmental stages to adulthood, and the expression was maintained in activated microglia under injury or inflammatory condition. However, Siglec-H expression was absent from CNS-associated macrophages and CNS-infiltrating monocytes, except for a minor subset of cells. We also show that the Siglech gene locus is a feasible site for specific targeting of microglia in the nervous system. In conclusion, Siglec-H is a reliable marker for microglia that will allow histological identification of microglia and microglia-specific gene manipulation in the nervous system.


Subject(s)
Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Lectins/metabolism , Macrophages/pathology , Microglia/metabolism , Neuralgia/pathology , Receptors, Cell Surface/metabolism , Animals , Animals, Newborn , Disease Models, Animal , Embryo, Mammalian , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Expression Regulation/genetics , Lectins/genetics , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin-Oligodendrocyte Glycoprotein/toxicity , Myeloid Cells/pathology , Neutrophil Infiltration/genetics , Neutrophil Infiltration/physiology , Peptide Fragments/toxicity , Pertussis Toxin/toxicity , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Cell Surface/genetics
12.
Glycobiology ; 27(9): 800-805, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28810661

ABSTRACT

Lectin-glycan interactions play important roles in many biological systems, but the nature of glycoprotein counter-receptors expressed on cell membranes is often poorly understood. To help overcome this problem, we developed a method based on proximity labeling technology. Using a peroxidase-coupled lectin, addition of H2O2 and tyramide-biotin substrates leads to generation of short-range biotin radicals that biotinylate proteins in the immediate vicinity of the bound lectin, which can subsequently be identified. As a proof-of-principle, sialoadhesin-horseradish peroxidase-human IgG1 Fc recombinant protein constructs were precomplexed with anti-Fc antibodies, bound to human erythrocytes and reacted with H2O2 and tyramide-SS-biotin. The erythrocyte membrane protein with strongest biotinylation was identified as glycophorin A, in agreement with early studies using lectin overlay and reglycosylation approaches. As a further test of the method, the plant lectin MAL II was conjugated with horseradish peroxidase and used in proximity labeling of human erythrocytes. Glycophorin A was again selectively labeled, which is consistent with previous reports that MAL II has high affinity for glycophorin. This method could be applied to other lectins to identify their membrane counter-receptors.


Subject(s)
Biotin/analogs & derivatives , Glycophorins/metabolism , Horseradish Peroxidase/chemistry , Immunoglobulin Fc Fragments/metabolism , Receptors, Mitogen/metabolism , Staining and Labeling/methods , Tyramine/analogs & derivatives , Biotin/chemistry , Biotinylation , Erythrocyte Membrane/chemistry , Glycoconjugates/chemistry , Glycoconjugates/metabolism , Glycophorins/chemistry , Humans , Hydrogen Peroxide/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Plant Lectins/chemistry , Plant Lectins/metabolism , Receptors, Mitogen/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sialic Acid Binding Ig-like Lectin 1/chemistry , Tyramine/chemistry
13.
Proc Natl Acad Sci U S A ; 111(16): 5998-6003, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24711415

ABSTRACT

Compelling evidence for naturally occurring immunosurveillance against malignancies informs and justifies some current approaches toward cancer immunotherapy. However, some types of immune reactions have also been shown to facilitate tumor progression. For example, our previous studies showed that although experimental tumor growth is enhanced by low levels of circulating antibodies directed against the nonhuman sialic acid N-glycolyl-neuraminic acid (Neu5Gc), which accumulates in human tumors, growth could be inhibited by anti-Neu5Gc antibodies from a different source, in a different model. However, it remains generally unclear whether the immune responses that mediate cancer immunosurveillance vs. those responsible for inflammatory facilitation are qualitatively and/or quantitatively distinct. Here, we address this question using multiple murine tumor growth models in which polyclonal antibodies against tumor antigens, such as Neu5Gc, can alter tumor progression. We found that although growth was stimulated at low antibody doses, it was inhibited by high doses, over a linear and remarkably narrow range, defining an immune response curve (IRC; i.e., inverse hormesis). Moreover, modulation of immune responses against the tumor by altering antibody avidity or by enhancing innate immunity shifted the IRC in the appropriate direction. Thus, the dualistic role of immunosurveillance vs. inflammation in modulating tumor progression can be quantitatively distinguished in multiple model systems, and can occur over a remarkably narrow range. Similar findings were made in a human tumor xenograft model using a narrow range of doses of a monoclonal antibody currently in clinical use. These findings may have implications for the etiology, prevention, and treatment of cancer.


Subject(s)
Antibodies, Neoplasm/immunology , Hormesis/immunology , Neoplasms/immunology , Neoplasms/pathology , Adaptive Immunity/immunology , Animals , Antibodies, Monoclonal/immunology , Antibody Affinity/immunology , Burkitt Lymphoma/immunology , Burkitt Lymphoma/pathology , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Disease Progression , Humans , Immunoglobulin G/immunology , Inflammation/pathology , Killer Cells, Natural/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Nude , Neuraminic Acids/immunology , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
14.
J Biol Chem ; 290(45): 27345-27359, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26370074

ABSTRACT

Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.


Subject(s)
Moloney murine leukemia virus/pathogenicity , Sialic Acid Binding Ig-like Lectin 1/chemistry , Sialic Acid Binding Ig-like Lectin 1/physiology , Animals , Binding Sites , Cell Line , Gangliosides/chemistry , Gangliosides/metabolism , Host-Pathogen Interactions/physiology , Humans , Interferon-alpha/physiology , Leukemia, Experimental/physiopathology , Leukemia, Experimental/virology , Lymphocytes/physiology , Lymphocytes/virology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/physiology , N-Acetylneuraminic Acid/chemistry , Receptors, Virus/chemistry , Receptors, Virus/physiology , Retroviridae Infections/physiopathology , Retroviridae Infections/virology , Sialic Acid Binding Ig-like Lectin 1/genetics , Tumor Virus Infections/physiopathology , Tumor Virus Infections/virology
15.
PLoS Pathog ; 10(1): e1003846, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24391502

ABSTRACT

Group B Streptococcus (GBS) is a common agent of bacterial sepsis and meningitis in newborns. The GBS surface capsule contains sialic acids (Sia) that engage Sia-binding immunoglobulin-like lectins (Siglecs) on leukocytes. Here we use mice lacking Siglec-E, an inhibitory Siglec of myelomonocytic cells, to study the significance of GBS Siglec engagement during in vivo infection. We found GBS bound to Siglec-E in a Sia-specific fashion to blunt NF-κB and MAPK activation. As a consequence, Siglec-E-deficient macrophages had enhanced pro-inflammatory cytokine secretion, phagocytosis and bactericidal activity against the pathogen. Following pulmonary or low-dose intravenous GBS challenge, Siglec-E KO mice produced more pro-inflammatory cytokines and exhibited reduced GBS invasion of the central nervous system. In contrast, upon high dose lethal challenges, cytokine storm in Siglec-E KO mice was associated with accelerated mortality. We conclude that GBS Sia mimicry influences host innate immune and inflammatory responses in vivo through engagement of an inhibitory Siglec, with the ultimate outcome of the host response varying depending upon the site, stage and magnitude of infection.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, B-Lymphocyte/immunology , Molecular Mimicry/immunology , N-Acetylneuraminic Acid/immunology , Pneumonia, Bacterial/immunology , Streptococcal Infections/immunology , Streptococcus agalactiae/immunology , Animals , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte/genetics , Cytokines/genetics , Cytokines/immunology , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , N-Acetylneuraminic Acid/genetics , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/pathology , Streptococcal Infections/genetics , Streptococcal Infections/pathology
16.
Blood ; 123(2): 208-16, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24255917

ABSTRACT

Exosomes are lipid nanovesicles released following fusion of the endosoma limiting membrane with the plasma membrane; however, their fate in lymphoid organs after their release remains controversial. We determined that sialoadhesin (CD169; Siglec-1) is required for the capture of B cell-derived exosomes via their surface-expressed α2,3-linked sialic acids. Exosome-capturing macrophages were present in the marginal zone of the spleen and in the subcapsular sinus of the lymph node. In vitro assays performed on spleen and lymph node sections confirmed that exosome binding to CD169 was not solely due to preferential fluid flow to these areas. Although the circulation half-life of exosomes in blood of wild-type and CD169(-/-) mice was similar, exosomes displayed altered distribution in CD169(-/-) mice, with exosomes freely accessing the outer marginal zone rim of SIGN-R1(+) macrophages and F4/80(+) red pulp macrophages. In the lymph node, exosomes were not retained in the subcapsular sinus of CD169(-/-) mice but penetrated deeper into the paracortex. Interestingly, CD169(-/-) mice demonstrated an enhanced response to antigen-pulsed exosomes. This is the first report of a role for CD169 in the capture of exosomes and its potential to mediate the immune response to exosomal antigen.


Subject(s)
Exosomes/metabolism , Lymph Nodes/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Spleen/metabolism , Animals , Antigens/immunology , Cytotoxicity, Immunologic , Exosomes/immunology , Liver/immunology , Liver/metabolism , Lymph Nodes/immunology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Knockout , Peptides/immunology , Protein Binding , Sialic Acid Binding Ig-like Lectin 1/genetics , Spleen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
17.
Analyst ; 141(20): 5799-5809, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27537280

ABSTRACT

Sialic acids are widespread in biology, fulfilling a wide range of functions. Their cognate lectin receptors - Siglecs - are equally diverse and widely distributed, with different Siglecs found within distinct populations of cells in the haemopoietic, immune and nervous systems. A convenient way to assay ligand recognition of soluble Siglecs would be useful, as would methods for the concomitant assessment of Siglec distribution on cell surfaces. Here we report the use of gold nanoparticles functionalised with a sialic acid ligand diluted with a polyethylene glycol (PEG) ligand for the plasmonic detection of a soluble form of murine Siglec-E (mSiglec-E-Fc fusion protein) and, importantly, for the specific detection of the same Siglec expressed on the surface of mammalian cells. These sialic acid functionalised nanoparticles are shown to overcome problems such as cellular cis interactions and low Siglec-ligand affinity. The gold nanoparticles were functionalised with various ratios of sialic acid : PEG ligands and the optimum ratio for the detection of murine Siglec-E was established based on the plasmonic detection of the soluble pre-complexed recombinant form of murine Siglec-E (mSiglec-E-Fc fusion protein). The optimum ratio for the detection of the fusion protein was found to be sialic acid : PEG ligands in a 50 : 50 ratio (glyconanoparticles 1). The optimised glyconanoparticles 1 were used to recognise and bind to the murine Siglec-E expressed on the surface of transfected Chinese hamster ovary cells as determined by transmission electron microscopy.


Subject(s)
Antigens, CD/analysis , Antigens, Differentiation, B-Lymphocyte/analysis , Gold , Metal Nanoparticles , Sialic Acids/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Mice , N-Acetylneuraminic Acid
18.
Proc Natl Acad Sci U S A ; 110(19): 7826-31, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23610394

ABSTRACT

Invariant natural killer T (iNKT) cells induce a protective immune response triggered by foreign glycolipid antigens bound to CD1d on antigen-presenting cells (APCs). A limitation of using glycolipid antigens to stimulate immune responses in human patients has been the inability to target them to the most effective APCs. Recent studies have implicated phagocytic CD169(+) macrophages as major APCs in lymph nodes for priming iNKT cells in mice immunized with glycolipid antigen in particulate form. CD169 is known as sialoadhesin (Sn), a macrophage-specific adhesion and endocytic receptor of the siglec family that recognizes sialic acid containing glycans as ligands. We have recently developed liposomes decorated with glycan ligands for CD169/Sn suitable for targeted delivery to macrophages via CD169/Sn-mediated endocytosis. Here we show that targeted delivery of a lipid antigen to CD169(+) macrophages in vivo results in robust iNKT cell activation in liver and spleen using nanogram amounts of antigen. Activation of iNKT cells is abrogated in Cd169(-/-) mice and is macrophage-dependent, demonstrating that targeting CD169(+) macrophages is sufficient for systemic activation of iNKT cells. When pulsed with targeted liposomes, human monocyte-derived dendritic cells expressing CD169/Sn activated human iNKT cells, demonstrating the conservation of the CD169/Sn endocytic pathway capable of presenting lipid antigens to iNKT cells.


Subject(s)
Lipids/immunology , Macrophages/metabolism , Natural Killer T-Cells/cytology , Sialic Acid Binding Ig-like Lectin 1/metabolism , Animals , Antigen Presentation , Antigens/immunology , Cell Line , Dendritic Cells/cytology , Endocytosis , Glycolipids/immunology , Humans , Ligands , Liposomes/metabolism , Liver/pathology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Monocytes/cytology
19.
J Biol Chem ; 289(29): 20370-6, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24895121

ABSTRACT

Siglec-E is a sialic acid-binding Ig-like lectin expressed on murine myeloid cells. It has recently been shown to function as a negative regulator of ß2-integrin-dependent neutrophil recruitment to the lung following exposure to lipopolysaccharide (LPS). Here, we demonstrate that siglec-E promoted neutrophil production of reactive oxygen species (ROS) following CD11b ß2-integrin ligation with fibrinogen in a sialic acid-dependent manner, but it had no effect on ROS triggered by a variety of other stimulants. Siglec-E promotion of ROS was likely mediated via Akt activation, because siglec-E-deficient neutrophils plated on fibrinogen exhibited reduced phosphorylation of Akt, and the Akt inhibitor, MK2206, blocked fibrinogen-induced ROS. In vivo imaging showed that siglec-E also promoted ROS in acutely inflamed lungs following exposure of mice to LPS. Importantly, siglec-E-promoted ROS were required for its inhibitory function, as the NADPH oxidase inhibitor, apocynin, reversed the siglec-E-mediated suppression of neutrophil recruitment and blocked neutrophil ROS production in vitro. Taken together, these results demonstrate that siglec-E functions as an inhibitory receptor of neutrophils via positive regulation of NADPH oxidase activation and ROS production. Our findings have implications for the inhibitory role of siglec-9 on human neutrophils in sepsis and acute lung injury.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , CD18 Antigens/metabolism , Lung/immunology , Lung/metabolism , NADPH Oxidases/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Acute Lung Injury/immunology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Amino Acid Substitution , Animals , Antigens, CD/chemistry , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte/chemistry , Antigens, Differentiation, B-Lymphocyte/genetics , Cell Movement , Enzyme Activation , Female , Fibrinogen/metabolism , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Lipopolysaccharides/toxicity , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Mutagenesis, Site-Directed , Neutrophils/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
20.
Blood ; 121(11): 2084-94, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23315163

ABSTRACT

Neutrophil entry into the lung tissues is a key step in host defense to bacterial and yeast infections, but if uncontrolled can lead to severe tissue damage. Here, we demonstrate for the first time that sialic acid binding Ig-like lectin E (siglec-E) functions to selectively regulate early neutrophil recruitment into the lung. In a model of acute lung inflammation induced by aerosolized lipopolysaccharide, siglec-E-deficient mice exhibited exaggerated neutrophil recruitment that was reversed by blockade of the ß2 integrin, CD11b. Siglec-E suppressed CD11b "outside-in" signaling, because siglec-E-deficient neutrophils plated on the CD11b ligand fibrinogen showed exaggerated phosphorylation of Syk and p38 mitogen-activated protein kinase. Sialidase treatment of fibrinogen reversed the suppressive effect of siglec-E on CD11b signaling, suggesting that sialic acid recognition by siglec-E is required for its inhibitory function. Siglec-E in neutrophils was constitutively associated with the tyrosine phosphatase SHP-1 and may therefore function to constitutively dampen inflammatory responses of neutrophils. These data reveal that siglec-E is an important negative regulator of neutrophil recruitment to the lung and ß2 integrin-dependent signaling. Our findings have implications for the human functional ortholog, siglec-9, and its potential role in regulating inflammatory lung disease.


Subject(s)
Antigens, CD/physiology , Antigens, Differentiation, B-Lymphocyte/physiology , CD11b Antigen/metabolism , CD18 Antigens/metabolism , Neutrophil Infiltration/genetics , Pneumonia/genetics , Acute Disease , Animals , Antigens, CD/genetics , Antigens, Differentiation, B-Lymphocyte/genetics , CD11b Antigen/genetics , CD11b Antigen/physiology , CD18 Antigens/genetics , CD18 Antigens/physiology , Cell Adhesion/genetics , Cell Adhesion/physiology , Down-Regulation/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/immunology , Pneumonia/immunology , Pneumonia/metabolism , Signal Transduction/genetics , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL