Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(7): 1398-1416.e23, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36944331

ABSTRACT

CD3δ SCID is a devastating inborn error of immunity caused by mutations in CD3D, encoding the invariant CD3δ chain of the CD3/TCR complex necessary for normal thymopoiesis. We demonstrate an adenine base editing (ABE) strategy to restore CD3δ in autologous hematopoietic stem and progenitor cells (HSPCs). Delivery of mRNA encoding a laboratory-evolved ABE and guide RNA into a CD3δ SCID patient's HSPCs resulted in a 71.2% ± 7.85% (n = 3) correction of the pathogenic mutation. Edited HSPCs differentiated in artificial thymic organoids produced mature T cells exhibiting diverse TCR repertoires and TCR-dependent functions. Edited human HSPCs transplanted into immunodeficient mice showed 88% reversion of the CD3D defect in human CD34+ cells isolated from mouse bone marrow after 16 weeks, indicating correction of long-term repopulating HSCs. These findings demonstrate the preclinical efficacy of ABE in HSPCs for the treatment of CD3δ SCID, providing a foundation for the development of a one-time treatment for CD3δ SCID patients.


Subject(s)
Severe Combined Immunodeficiency , T-Lymphocytes , Humans , Animals , Mice , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Gene Editing , Mice, SCID , CD3 Complex , Receptors, Antigen, T-Cell/genetics
2.
Nature ; 630(8016): 412-420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839950

ABSTRACT

The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.


Subject(s)
Cell Self Renewal , Hematopoietic Stem Cells , Nuclear Proteins , Animals , Female , Humans , Male , Mice , Cells, Cultured , Endocytosis , Endosomes/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fetal Blood/cytology , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Liver/cytology , Liver/metabolism , Liver/embryology , Mitochondria/metabolism , Nuclear Proteins/metabolism , Signal Transduction , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Single-Cell Gene Expression Analysis
3.
Nat Immunol ; 16(12): 1282-91, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26502406

ABSTRACT

To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus.


Subject(s)
B-Lymphocytes/metabolism , Cell Lineage/genetics , Lymphoid Progenitor Cells/metabolism , RNA, Long Noncoding/genetics , T-Lymphocytes/metabolism , Transcriptome , Bayes Theorem , Bone Marrow Cells/metabolism , Cluster Analysis , Gene Expression Profiling/methods , Gene Ontology , Humans , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA/methods , Thymus Gland/cytology , Thymus Gland/metabolism
4.
Proc Natl Acad Sci U S A ; 120(21): e2221116120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37192158

ABSTRACT

Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), a computational platform capable of discovering AS-derived tumor antigens (TAs) for T cell receptor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages large-scale tumor and normal transcriptome data and incorporates multiple screening approaches to discover AS-derived TAs with tumor-associated or tumor-specific expression. In a proof-of-concept analysis integrating transcriptomics and immunopeptidomics data, we showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for two common HLA types (A*02:01 and A*03:01). A more stringent screening test prioritized 48 epitopes from 20 events with "neoantigen-like" NEPC-specific expression. Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we performed in vitro T cell priming in combination with single-cell TCR sequencing. Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) showed high activity against individual IRIS-predicted epitopes, providing strong evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed efficient cytotoxicity against target cells expressing the target peptide. Our study illustrates the contribution of AS to the TA repertoire of cancer cells and demonstrates the utility of IRIS for discovering AS-derived TAs and expanding cancer immunotherapies.


Subject(s)
Neoplasms , RNA Precursors , Male , Humans , RNA Precursors/metabolism , Alternative Splicing , Leukocytes, Mononuclear/metabolism , Receptors, Antigen, T-Cell , Epitopes, T-Lymphocyte , Immunotherapy , Antigens, Neoplasm , Peptides/metabolism , Neoplasms/genetics , Neoplasms/therapy
5.
Nature ; 576(7786): 281-286, 2019 12.
Article in English | MEDLINE | ID: mdl-31776511

ABSTRACT

Limited knowledge of the mechanisms that govern the self-renewal of human haematopoietic stem cells (HSCs), and why this fails in culture, have impeded the expansion of HSCs for transplantation1. Here we identify MLLT3 (also known as AF9) as a crucial regulator of HSCs that is highly enriched in human fetal, neonatal and adult HSCs, but downregulated in culture. Depletion of MLLT3 prevented the maintenance of transplantable human haematopoietic stem or progenitor cells (HSPCs) in culture, whereas stabilizing MLLT3 expression in culture enabled more than 12-fold expansion of transplantable HSCs that provided balanced multilineage reconstitution in primary and secondary mouse recipients. Similar to endogenous MLLT3, overexpressed MLLT3 localized to active promoters in HSPCs, sustained levels of H3K79me2 and protected the HSC transcriptional program in culture. MLLT3 thus acts as HSC maintenance factor that links histone reader and modifying activities to modulate HSC gene expression, and may provide a promising approach to expand HSCs for transplantation.


Subject(s)
Cell Self Renewal , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Nuclear Proteins/metabolism , Animals , Cells, Cultured , Gene Expression Regulation , Hematopoietic Stem Cell Transplantation , Humans , Mice , Nuclear Proteins/genetics , Protein Binding
6.
Proc Natl Acad Sci U S A ; 119(31): e2203410119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35878026

ABSTRACT

Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide-major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.


Subject(s)
Acid Phosphatase , Antigens, Neoplasm , Receptors, Antigen, T-Cell , Acid Phosphatase/metabolism , Antigens, Neoplasm/metabolism , Epitopes , HLA-A Antigens/metabolism , HLA-A2 Antigen , Humans , Leukocytes, Mononuclear , Neoplasms/immunology , Peptides , Receptors, Antigen, T-Cell/metabolism
7.
N Engl J Med ; 384(21): 2002-2013, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33974366

ABSTRACT

BACKGROUND: Severe combined immunodeficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) is a rare and life-threatening primary immunodeficiency. METHODS: We treated 50 patients with ADA-SCID (30 in the United States and 20 in the United Kingdom) with an investigational gene therapy composed of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with a self-inactivating lentiviral vector encoding human ADA. Data from the two U.S. studies (in which fresh and cryopreserved formulations were used) at 24 months of follow-up were analyzed alongside data from the U.K. study (in which a fresh formulation was used) at 36 months of follow-up. RESULTS: Overall survival was 100% in all studies up to 24 and 36 months. Event-free survival (in the absence of reinitiation of enzyme-replacement therapy or rescue allogeneic hematopoietic stem-cell transplantation) was 97% (U.S. studies) and 100% (U.K. study) at 12 months; 97% and 95%, respectively, at 24 months; and 95% (U.K. study) at 36 months. Engraftment of genetically modified HSPCs persisted in 29 of 30 patients in the U.S. studies and in 19 of 20 patients in the U.K. study. Patients had sustained metabolic detoxification and normalization of ADA activity levels. Immune reconstitution was robust, with 90% of the patients in the U.S. studies and 100% of those in the U.K. study discontinuing immunoglobulin-replacement therapy by 24 months and 36 months, respectively. No evidence of monoclonal expansion, leukoproliferative complications, or emergence of replication-competent lentivirus was noted, and no events of autoimmunity or graft-versus-host disease occurred. Most adverse events were of low grade. CONCLUSIONS: Treatment of ADA-SCID with ex vivo lentiviral HSPC gene therapy resulted in high overall and event-free survival with sustained ADA expression, metabolic correction, and functional immune reconstitution. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01852071, NCT02999984, and NCT01380990.).


Subject(s)
Agammaglobulinemia/therapy , Genetic Therapy/methods , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Lentivirus/genetics , Severe Combined Immunodeficiency/therapy , Adenosine Deaminase/deficiency , Adolescent , Child , Child, Preschool , Genetic Therapy/adverse effects , Humans , Infant , Lymphocyte Count , Progression-Free Survival , Prospective Studies , Transplantation, Autologous
8.
Nat Immunol ; 13(10): 963-71, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22941246

ABSTRACT

Expression of the cell-surface antigen CD10 has long been used to define the lymphoid commitment of human cells. Here we report a unique lymphoid-primed population in human bone marrow that was generated from hematopoietic stem cells (HSCs) before onset of the expression of CD10 and commitment to the B cell lineage. We identified this subset by high expression of the homing molecule L-selectin (CD62L). CD10(-)CD62L(hi) progenitors had full lymphoid and monocytic potential but lacked erythroid potential. Gene-expression profiling placed the CD10(-)CD62L(hi) population at an intermediate stage of differentiation between HSCs and lineage-negative (Lin(-)) CD34(+)CD10(+) progenitors. CD62L was expressed on immature thymocytes, and its ligands were expressed at the cortico-medullary junction of the thymus, which suggested a possible role for this molecule in homing to the thymus. Our studies identify the earliest stage of lymphoid priming in human bone marrow.


Subject(s)
Bone Marrow Cells/immunology , Hematopoietic Stem Cells/metabolism , L-Selectin/biosynthesis , Neprilysin/biosynthesis , Antigens, CD34/immunology , Antigens, CD34/metabolism , Antigens, CD7/immunology , Bone Marrow Cells/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Gene Expression Profiling , Hematopoietic Stem Cells/immunology , Humans , Thymocytes/immunology , Thymocytes/metabolism , Thymus Gland/metabolism , Up-Regulation
9.
J Immunol ; 205(9): 2423-2436, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32989093

ABSTRACT

Neonatal life marks the apogee of murine thymic growth. Over the first few days after birth, growth slows and the murine thymus switches from fetal to adult morphology and function; little is known about the cues driving this dramatic transition. In this study, we show for the first time (to our knowledge) the critical role of vascular endothelial growth factor (VEGF) on thymic morphogenesis beyond its well-known role in angiogenesis. During a brief window a few days after birth, VEGF inhibition induced rapid and profound remodeling of the endothelial, mesenchymal and epithelial thymic stromal compartments, mimicking changes seen during early adult maturation. Rapid transcriptional changes were seen in each compartment after VEGF inhibition, including genes involved in migration, chemotaxis, and cell adhesion as well as induction of a proinflammatory and proadipogenic signature in endothelium, pericytes, and mesenchyme. Thymocyte numbers fell subsequent to the stromal changes. Expression patterns and functional blockade of the receptors VEGFR2 and NRP1 demonstrated that VEGF mediates its pleiotropic effects through distinct receptors on each microenvironmental compartment of the developing mouse thymus.


Subject(s)
Thymus Gland/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Adhesion/physiology , Cell Movement/physiology , Endothelium/metabolism , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Pericytes/metabolism , Thymocytes/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
10.
Nat Methods ; 14(5): 521-530, 2017 May.
Article in English | MEDLINE | ID: mdl-28369043

ABSTRACT

Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3+TCR-αß+ single-positive CD8+ or CD4+ cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vß expression, consistent with allelic exclusion of Vß-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.


Subject(s)
Artificial Organs , Cell Differentiation , Hematopoietic Stem Cells/cytology , Organoids/cytology , T-Lymphocytes/cytology , Thymus Gland/cytology , Biotechnology/methods , Hematopoietic Stem Cells/immunology , Humans , Organoids/immunology , Stem Cells/cytology , Stem Cells/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology
11.
Stem Cells ; 36(11): 1663-1675, 2018 11.
Article in English | MEDLINE | ID: mdl-30004607

ABSTRACT

Myeloid malignancies, including myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myeloid leukemia, are characterized by abnormal proliferation and differentiation of hematopoietic stem and progenitor cells (HSPCs). Reports on analysis of bone marrow samples from patients have revealed a high incidence of mutations in splicing factors in early stem and progenitor cell clones, but the mechanisms underlying transformation of HSPCs harboring these mutations remain unknown. Using ex vivo cultures of primary human CD34+ cells as a model, we find that mutations in splicing factors SRSF2 and U2AF1 exert distinct effects on proliferation and differentiation of HSPCs. SRSF2 mutations cause a dramatic inhibition of proliferation via a G2-M phase arrest and induction of apoptosis. U2AF1 mutations, conversely, do not significantly affect proliferation. Mutations in both SRSF2 and U2AF1 cause abnormal differentiation by skewing granulo-monocytic differentiation toward monocytes but elicit diverse effects on megakaryo-erythroid differentiation. The SRSF2 mutations skew differentiation toward megakaryocytes whereas U2AF1 mutations cause an increase in the erythroid cell populations. These distinct functional consequences indicate that SRSF2 and U2AF1 mutations have cell context-specific effects and that the generation of myeloid disease phenotype by mutations in the genes coding these two proteins likely involves different intracellular mechanisms. Stem Cells 2018;36:1663-1675.


Subject(s)
G2 Phase Cell Cycle Checkpoints/genetics , Hematopoietic Stem Cell Transplantation/methods , Leukemia, Myeloid, Acute/genetics , RNA Splicing Factors/metabolism , Stem Cells/metabolism , Transplantation Conditioning/methods , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/pathology , Mutation
12.
Stem Cells ; 34(5): 1239-50, 2016 05.
Article in English | MEDLINE | ID: mdl-26934332

ABSTRACT

Although clonal studies of lineage potential have been extensively applied to organ specific stem and progenitor cells, much less is known about the clonal origins of lineages formed from the germ layers in early embryogenesis. We applied lentiviral tagging followed by vector integration site analysis (VISA) with high-throughput sequencing to investigate the ontogeny of the hematopoietic, endothelial and mesenchymal lineages as they emerge from human embryonic mesoderm. In contrast to studies that have used VISA to track differentiation of self-renewing stem cell clones that amplify significantly over time, we focused on a population of progenitor clones with limited self-renewal capability. Our analyses uncovered the critical influence of sampling on the interpretation of lentiviral tag sharing, particularly among complex populations with minimal clonal duplication. By applying a quantitative framework to estimate the degree of undersampling we revealed the existence of tripotent mesodermal progenitors derived from pluripotent stem cells, and the subsequent bifurcation of their differentiation into bipotent endothelial/hematopoietic or endothelial/mesenchymal progenitors. Stem Cells 2016;34:1239-1250.


Subject(s)
Cell Differentiation , Genetic Techniques , Mesoderm/cytology , Multipotent Stem Cells/cytology , Animals , Antigens, CD/metabolism , Cell Line , Cell Lineage , Cell Separation , Clone Cells , Flow Cytometry , Humans , Lentivirus/metabolism , Mice
13.
J Immunol ; 192(11): 5050-8, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24771849

ABSTRACT

Despite the power of model systems to reveal basic immunologic mechanisms, critical differences exist between species that necessitate the direct study of human cells. Illustrating this point is the difference in phenotype between patients with SCID caused by mutations affecting the common γ-chain (γc) cytokine signaling pathway and mice with similar mutations. Although in both species, null mutations in either IL-2RG (which encodes γc), or its direct downstream signaling partner JAK3, result in T and NK cell deficiency, an associated B cell deficiency is seen in mice but not in humans with these genetic defects. In this study, we applied recent data that have revised our understanding of the earliest stages of lymphoid commitment in human bone marrow (BM) to determine the requirement for signaling through IL-2RG and JAK3 in normal development of human lymphoid progenitors. BM samples from SCID patients with IL-2RG (n = 3) or JAK3 deficiency (n = 2), which produce similar "T-NK-B+" clinical phenotypes, were compared with normal BM and umbilical cord blood as well as BM from children on enzyme treatment for adenosine deaminase-deficient SCID (n = 2). In both IL-2RG- and JAK3-SCID patients, the early stages of lymphoid commitment from hematopoietic stem cells were present with development of lymphoid-primed multipotent progenitors, common lymphoid progenitors and B cell progenitors, normal expression patterns of IL-7RA and TLSPR, and the DNA recombination genes DNTT and RAG1. Thus, in humans, signaling through the γc pathway is not required for prethymic lymphoid commitment or for DNA rearrangement.


Subject(s)
Interleukin Receptor Common gamma Subunit/immunology , Lymphocytes/immunology , Severe Combined Immunodeficiency/immunology , Signal Transduction/immunology , Adult , Animals , Female , Humans , Interleukin Receptor Common gamma Subunit/genetics , Janus Kinase 3/genetics , Janus Kinase 3/immunology , Lymphocytes/pathology , Male , Mice , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/pathology , Signal Transduction/genetics
14.
Mol Cancer ; 14: 214, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26694754

ABSTRACT

BACKGROUND: A new class of non-coding RNAs, known as long non-coding RNAs (lncRNAs), has been recently described. These lncRNAs are implicated to play pivotal roles in various molecular processes, including development and oncogenesis. Gene expression profiling of human B-ALL samples showed differential lncRNA expression in samples with particular cytogenetic abnormalities. One of the most promising lncRNAs identified, designated B-ALL associated long RNA-6 (BALR-6), had the highest expression in patient samples carrying the MLL rearrangement, and is the focus of this study. RESULTS: Here, we performed a series of experiments to define the function of BALR-6, including several novel splice forms that we identified. Functionally, siRNA-mediated knockdown of BALR-6 in human B-ALL cell lines caused reduced cell proliferation and increased cell death. Conversely, overexpression of BALR-6 isoforms in both human and mouse cell lines caused increased proliferation and decreased apoptosis. Overexpression of BALR-6 in murine bone marrow transplantation experiments caused a significant increase in early hematopoietic progenitor populations, suggesting that its dysregulation may cause developmental changes. Notably, the knockdown of BALR-6 resulted in global dysregulation of gene expression. The gene set was enriched for leukemia-associated genes, as well as for the transcriptome regulated by Specificity Protein 1 (SP1). We confirmed changes in the expression of SP1, as well as its known interactor and downstream target CREB1. Luciferase reporter assays demonstrated an enhancement of SP1-mediated transcription in the presence of BALR-6. These data provide a putative mechanism for regulation by BALR-6 in B-ALL. CONCLUSIONS: Our findings support a role for the novel lncRNA BALR-6 in promoting cell survival in B-ALL. Furthermore, this lncRNA influences gene expression in B-ALL in a manner consistent with a function in transcriptional regulation. Specifically, our findings suggest that BALR-6 expression regulates the transcriptome downstream of SP1, and that this may underlie the function of BALR-6 in B-ALL.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Long Noncoding/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Knockdown Techniques , Hematopoietic Stem Cells/physiology , Humans , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , RNA, Long Noncoding/metabolism , Sp1 Transcription Factor/physiology , Transcriptome
15.
Biol Blood Marrow Transplant ; 21(3): 440-4, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25459642

ABSTRACT

Blood and marrow transplantation (BMT) is a standard curative therapy for patients with nonmalignant genetic diseases. Myeloablative conditioning has been associated with significant regimen-related toxicity (RRT), whereas reduced-intensity conditioning regimens have been associated with graft failure. In this prospective pilot trial conducted at 2 centers between 2006 and 2013, we report the outcome of 22 patients with nonmalignant genetic diseases who were conditioned with a novel reduced-toxicity regimen: i.v. busulfan (16 mg/kg), alemtuzumab (52 mg/m(2)), fludarabine (140 mg/m(2)), and cyclophosphamide (105 mg/kg). The median age of the study population was 3.5 years (range, 5 months to 26 years). No cases of sinusoidal obstruction syndrome, severe or chronic graft-versus-host disease (GVHD), or primary graft failure were reported. Median time to neutrophil engraftment (>500 cells/µL) and platelet engraftment (>20K cells/µL) were 19 (range, 12 to 50) and 23.5 (range, 14 to 134) days, respectively. The median length of follow-up was 3 years (range, .2 to 6.3). The overall survival rates were 95% at 100 days (95% confidence interval, .72 to .99) and 90% at 6 years (95% confidence interval, .68 to .98). RRT and chronic GVHD are significant barriers to BMT for patients with nonmalignant genetic diseases. This alemtuzumab-based reduced-toxicity regimen appears to be promising with durable engraftment, effective cure of clinical disease, low rates of RRT, and no observed chronic GVHD.


Subject(s)
Bone Marrow Transplantation , Genetic Diseases, Inborn/mortality , Genetic Diseases, Inborn/therapy , Graft Survival , Myeloablative Agonists/administration & dosage , Transplantation Conditioning , Adolescent , Adult , Allografts , Child , Child, Preschool , Disease-Free Survival , Female , Follow-Up Studies , Graft Rejection/mortality , Graft Rejection/prevention & control , Humans , Infant , Male , Pilot Projects , Survival Rate
16.
Blood ; 121(15): 2891-901, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23412095

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) emerge and develop adjacent to blood vessel walls in the yolk sac, aorta-gonad-mesonephros region, embryonic liver, and fetal bone marrow. In adult mouse bone marrow, perivascular cells shape a "niche" for HSPCs. Mesenchymal stem/stromal cells (MSCs), which support hematopoiesis in culture, are themselves derived in part from perivascular cells. In order to define their direct role in hematopoiesis, we tested the ability of purified human CD146(+) perivascular cells, as compared with unfractionated MSCs and CD146(-) cells, to sustain human HSPCs in coculture. CD146(+) perivascular cells support the long-term persistence, through cell-to-cell contact and at least partly via Notch activation, of human myelolymphoid HSPCs able to engraft primary and secondary immunodeficient mice. Conversely, unfractionated MSCs and CD146(-) cells induce differentiation and compromise ex vivo maintenance of HSPCs. Moreover, CD146(+) perivascular cells express, natively and in culture, molecular markers of the vascular hematopoietic niche. Unexpectedly, this dramatic, previously undocumented ability to support hematopoietic stem cells is present in CD146(+) perivascular cells extracted from the nonhematopoietic adipose tissue.


Subject(s)
Blood Vessels/physiology , CD146 Antigen/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Adult , Animals , Antigens, CD34/metabolism , Blood Vessels/cytology , Blotting, Western , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Communication , Cells, Cultured , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Coculture Techniques , Fetal Blood/cytology , Fetal Blood/metabolism , Hematopoietic Stem Cells/cytology , Humans , Immunohistochemistry , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intermediate Filament Proteins/genetics , Intermediate Filament Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nestin , Receptors, Notch/genetics , Receptors, Notch/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Serrate-Jagged Proteins
17.
Blood ; 121(10): 1814-8, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23319569

ABSTRACT

Bone marrow (BM) provides chemoprotection for acute lymphoblastic leukemia (ALL) cells, contributing to lack of efficacy of current therapies. Integrin alpha4 (alpha4) mediates stromal adhesion of normal and malignant B-cell precursors, and according to gene expression analyses from 207 children with minimal residual disease, is highly associated with poorest outcome. We tested whether interference with alpha4-mediated stromal adhesion might be a new ALL treatment. Two models of leukemia were used, one genetic (conditional alpha4 ablation of BCR-ABL1 [p210(+)] leukemia) and one pharmacological (anti-functional alpha4 antibody treatment of primary ALL). Conditional deletion of alpha4 sensitized leukemia cell to nilotinib. Adhesion of primary pre-B ALL cells was alpha4-dependent; alpha4 blockade sensitized primary ALL cells toward chemotherapy. Chemotherapy combined with Natalizumab prolonged survival of NOD/SCID recipients of primary ALL, suggesting adjuvant alpha4 inhibition as a novel strategy for pre-B ALL.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/physiology , Integrin alpha4/chemistry , Neoplasm, Residual/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Bone Marrow/drug effects , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Adhesion , Child , Flow Cytometry , Humans , Integrases/metabolism , Integrin alpha4/genetics , Integrin alpha4/metabolism , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Natalizumab , Neoplasm, Residual/metabolism , Neoplasm, Residual/mortality , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Stromal Cells/drug effects , Stromal Cells/metabolism , Stromal Cells/pathology
18.
Stem Cells ; 32(9): 2386-96, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24801626

ABSTRACT

A system that allows manipulation of the human thymic microenvironment is needed both to elucidate the extrinsic mechanisms that control human thymopoiesis and to develop potential cell therapies for thymic insufficiency. In this report, we developed an implantable thymic microenvironment composed of two human thymic stroma populations critical for thymopoiesis; thymic epithelial cells (TECs) and thymic mesenchyme (TM). TECs and TM from postnatal human thymi were cultured in specific conditions, allowing cell expansion and manipulation of gene expression, before reaggregation into a functional thymic unit. Human CD34+ hematopoietic stem and progenitor cells (HSPC) differentiated into T cells in the aggregates in vitro and in vivo following inguinal implantation of aggregates in immune deficient mice. Cord blood HSPC previously engrafted into murine bone marrow (BM), migrated to implants, and differentiated into human T cells with a broad T cell receptor repertoire. Furthermore, lentiviral-mediated expression of vascular endothelial growth factor in TM enhanced implant size and function and significantly increased thymocyte production. These results demonstrate an in vivo system for the generation of T cells from human HSPC and represent the first model to allow manipulation of gene expression and cell composition in the microenvironment of the human thymus.


Subject(s)
Thymus Gland/cytology , Tissue Engineering/methods , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Proliferation/physiology , Cellular Microenvironment/physiology , Gene Expression , Humans , Lymphopoiesis/physiology , Mice , Mice, Inbred NOD , Mice, SCID , Thymus Gland/drug effects
19.
Stem Cells ; 32(6): 1503-14, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24677652

ABSTRACT

Unlimited self renewal capacity and differentiation potential make human pluripotent stem cells (PSC) a promising source for the ex vivo manufacture of red blood cells (RBCs) for safe transfusion. Current methods to induce erythropoiesis from PSC suffer from low yields of RBCs, most of which are immature and contain embryonic and fetal rather than adult hemoglobins. We have previously shown that homodimerization of the intracellular component of MPL (ic-MPL) induces erythropoiesis from human cord blood progenitors. The goal of this study was to investigate the potential of ic-MPL dimerization to induce erythropoiesis from human embryonic stem cells (hESCs) and to identify the signaling pathways activated by this strategy. We present here the evidence that ic-MPL dimerization induces erythropoietin (EPO)-independent erythroid differentiation from hESC by inducing the generation of erythroid progenitors and by promoting more efficient erythroid maturation with increased RBC enucleation as well as increased gamma:epsilon globin ratio and production of beta-globin protein. ic-MPL dimerization is significantly more potent than EPO in inducing erythropoiesis, and its effect is additive to EPO. Signaling studies show that dimerization of ic-MPL, unlike stimulation of the wild type MPL receptor, activates AKT in the absence of JAK2/STAT5 signaling. AKT activation upregulates GATA-1 and FOXO3 transcriptional pathways with resulting inhibition of apoptosis, modulation of cell cycle, and enhanced maturation of erythroid cells. These findings open up potential new targets for the generation of therapeutically relevant RBC products from hPSC.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Erythropoiesis , Erythropoietin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Cell Cycle , Cell Differentiation , Cell Line , Cell Proliferation , Cell Survival , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Humans , Megakaryocytes/cytology , Megakaryocytes/metabolism , Protein Multimerization , Protein Structure, Tertiary , Receptors, Thrombopoietin/chemistry , Receptors, Thrombopoietin/metabolism
20.
Am J Hematol ; 90(11): 1021-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26242764

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) with matched unrelated donors (MUD), offers potentially curative therapy for patients with non-malignant genetic diseases. In this pilot study conducted from 2006 to 2014, we report the outcomes of 15 patients with non-malignant genetic diseases who received a myeloablative regimen with a reduced cyclophosphamide dose, adjunctive serotherapy and MUD HSCT [intravenous alemtuzumab (52 mg/m(2) ), busulfan (16 mg/kg), fludarabine (140mg/m(2) ), and cyclophosphamide (105 mg/kg)]. Graft-versus-host-disease (GVHD) prophylaxis consisted of tacrolimus/cyclosporine and methylprednisolone. Median (range) time to neutrophil engraftment (>500 cells/µL) and platelet engraftment (>20,000/mm(3) ) were 15 (12-28) and 25 (17-30) days, respectively. At a median follow-up of 2 (0.2-5.4) years, the overall survival (OS) was 93.3% (95% CI: 0.61-0.99) and disease-free survival (DFS) was 73.3% (95% CI: 0.44-0.89). Among this small sample, earlier alemtuzumab clearance was significantly associated with graft rejection (P = 0.047), earlier PHA response (P = 0.009) and a trend toward earlier recovery of recent thymic emigrants (RTE) (P = 0.06). This regimen was associated with durable donor engraftment and relatively low rates of regimen related toxicity (RRT); future alemtuzumab pharmacokinetic studies may improve outcomes, by allowing targeted alemtuzumab clearance to reduce graft rejection and promote more rapid immune reconstitution.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Genetic Diseases, Inborn/drug therapy , Graft Rejection/prevention & control , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation , Myeloablative Agonists/therapeutic use , Adolescent , Alemtuzumab , Busulfan/therapeutic use , Child , Child, Preschool , Cyclophosphamide/therapeutic use , Cyclosporine/therapeutic use , Drug Administration Schedule , Female , Gene Expression , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/mortality , Genetic Diseases, Inborn/pathology , Graft Rejection/genetics , Graft Rejection/mortality , Graft Rejection/pathology , Graft vs Host Disease/genetics , Graft vs Host Disease/mortality , Graft vs Host Disease/pathology , HLA Antigens/genetics , Humans , Immunosuppressive Agents/therapeutic use , Infant , Male , Methylprednisolone/therapeutic use , Pilot Projects , Survival Analysis , Tacrolimus/therapeutic use , Transplantation Conditioning , Transplantation, Homologous , Unrelated Donors , Vidarabine/analogs & derivatives , Vidarabine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL