Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Nature ; 539(7627): 65-68, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27626378

ABSTRACT

A unique feature of Pluto's large satellite Charon is its dark red northern polar cap. Similar colours on Pluto's surface have been attributed to tholin-like organic macromolecules produced by energetic radiation processing of hydrocarbons. The polar location on Charon implicates the temperature extremes that result from Charon's high obliquity and long seasons in the production of this material. The escape of Pluto's atmosphere provides a potential feedstock for a complex chemistry. Gas from Pluto that is transiently cold-trapped and processed at Charon's winter pole was proposed as an explanation for the dark coloration on the basis of an image of Charon's northern hemisphere, but not modelled quantitatively. Here we report images of the southern hemisphere illuminated by Pluto-shine and also images taken during the approach phase that show the northern polar cap over a range of longitudes. We model the surface thermal environment on Charon and the supply and temporary cold-trapping of material escaping from Pluto, as well as the photolytic processing of this material into more complex and less volatile molecules while cold-trapped. The model results are consistent with the proposed mechanism for producing the observed colour pattern on Charon.

2.
Nature ; 448(7149): 54-6, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17611536

ABSTRACT

Hyperion, Saturn's eighth largest icy satellite, is a body of irregular shape in a state of chaotic rotation. The surface is segregated into two distinct units. A spatially dominant high-albedo unit having the strong signature of H2O ice contrasts with a unit that is about a factor of four lower in albedo and is found mostly in the bottoms of cup-like craters. Here we report observations of Hyperion's surface in the ultraviolet and near-infrared spectral regions with two optical remote sensing instruments on the Cassini spacecraft at closest approach during a fly-by on 25-26 September 2005. The close fly-by afforded us the opportunity to obtain separate reflectance spectra of the high- and low-albedo surface components. The low-albedo material has spectral similarities and compositional signatures that link it with the surface of Phoebe and a hemisphere-wide superficial coating on Iapetus.

3.
Nature ; 435(7043): 786-9, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-15944697

ABSTRACT

Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.


Subject(s)
Extraterrestrial Environment/chemistry , Gases/analysis , Ice/analysis , Infrared Rays , Moon , Photography , Saturn , Atmosphere/chemistry , Gases/chemistry , Geography , Hydrocarbons/analysis , Hydrocarbons/chemistry , Methane/analysis , Methane/chemistry , Spacecraft
4.
Science ; 367(6481)2020 02 28.
Article in English | MEDLINE | ID: mdl-32054695

ABSTRACT

The New Horizons spacecraft's encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU69) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth's contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System.

5.
Science ; 367(6481)2020 02 28.
Article in English | MEDLINE | ID: mdl-32054693

ABSTRACT

The outer Solar System object (486958) Arrokoth (provisional designation 2014 MU69) has been largely undisturbed since its formation. We studied its surface composition using data collected by the New Horizons spacecraft. Methanol ice is present along with organic material, which may have formed through irradiation of simple molecules. Water ice was not detected. This composition indicates hydrogenation of carbon monoxide-rich ice and/or energetic processing of methane condensed on water ice grains in the cold, outer edge of the early Solar System. There are only small regional variations in color and spectra across the surface, which suggests that Arrokoth formed from a homogeneous or well-mixed reservoir of solids. Microwave thermal emission from the winter night side is consistent with a mean brightness temperature of 29 ± 5 kelvin.

6.
Science ; 367(6481)2020 02 28.
Article in English | MEDLINE | ID: mdl-32054694

ABSTRACT

The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU69). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism.

7.
Science ; 166(3902): 215-8, 1969 Oct 10.
Article in English | MEDLINE | ID: mdl-17731484

ABSTRACT

Infrared reflectance studies of small lunar regions reveal several absorption bands which match those of ferrous iron in laboratory spectra of olivines and orthopyroxenes. The craters Kepler and Aristarchus exhibit absorption bands suggestive of orthopyroxene, whereas the background mare material shows a band probably due to olivine.

8.
Science ; 238(4824): 183-4, 1987 Oct 09.
Article in English | MEDLINE | ID: mdl-17800458

ABSTRACT

Infrared absorption spectra of a low-albedo water-rich asteroid appear to show a weak 3.4-micrometer carbon-hydrogen stretching mode band, which suggests the presence of hydrocarbons on asteroid 130 Elektra. The organic extract from the primitive carbonaceous chondritic Murchison meteorite shows similar spectral bands.

9.
Science ; 182(4109): 277-9, 1973 Oct 19.
Article in English | MEDLINE | ID: mdl-17749307

ABSTRACT

Spectroscopic evidence for hydrogen burning in air was obtained at Kilauea Volcano. The abundance of hydrogen required to support combustion is consistent with that predicted for gases in equilibrium with typical Hawaiian tholeiitic basalt.

10.
Science ; 207(4434): 976-7, 1980 Feb 29.
Article in English | MEDLINE | ID: mdl-17830455

ABSTRACT

New observations of Trojan asteroid 624, Hektor, in April 1979 establish that the high amplitude of the rotational light curve of this object is caused by its elongated shape and not by patches of dark and light albedo on opposing hemispheres. These observations confirm that Hektor is a very unusual object and are consistent with the hypothesis that it may be a compound asteroid formed when two Trojans of comparable size fell together-a rare fossilized example of a planetary accretion process.

11.
Science ; 223(4633): 281-3, 1984 Jan 20.
Article in English | MEDLINE | ID: mdl-17801598

ABSTRACT

Two asteroids have clear indications of olivine-rich surface petrology without any indication of pyroxene or plagioclase, suggesting that the olivine may be quite pure. They provide probable examples of mantles of differentiated parent asteroids exposed by fragmentation and are good candidates for the parent bodies of the unusual olivine meteorite Brachina or the olivine-iron alloy meteorites called pallasites.

12.
Science ; 261(5122): 751-4, 1993 Aug 06.
Article in English | MEDLINE | ID: mdl-17757214

ABSTRACT

Laboratory spectra of the first overtone band (2.1480 micrometers, 4655.4 reciprocal centimeters) of solid nitrogen show additional structure at 2.1618 micrometers (4625.8 reciprocal centimeters) over a limited temperature range. The spectrum of Neptune's satellite Triton shows the nitrogen overtone band as well as the temperature-sensitive component. The temperature dependence of this band may be used in conjunction with ground-based observations of Triton as an independent means of determining the temperature of surface deposits of nitrogen ice. The surface temperature of Triton is found to be 38.0(+2.0)(-1.0) K, in agreement with previous temperature estimates and measurements. There is no spectral evidenceforthe presence of alpha-nitrogen on Triton's surface, indicating thatthere is less than 10 percent carbon monoxide in solid solution with the nitrogen on the surface.

13.
Science ; 245(4915): 283-6, 1989 Jul 21.
Article in English | MEDLINE | ID: mdl-17834678

ABSTRACT

The quantity and physical state of methane and nitrogen in the atmosphere of Neptune's satellite Triton and on the surface are evaluated by means of new telescopic data and laboratory measurements of these volatiles. Methane ice is seen in some spectral regions, indicating that the atmosphere is sufficiently transparent to permit sunlight penetration to the surface. Some of the molecular nitrogen absorption occurs in the atmosphere, though some must occur in condensed nitrogen (liquid or solid) on Triton's surface, or in a thin cloud of condensed nitrogen. The Voyager spacecraft cameras should see the surface of Triton.

14.
Science ; 276(5314): 937-9, 1997 May 09.
Article in English | MEDLINE | ID: mdl-9163038

ABSTRACT

The 1.42- to 2.40-micrometer spectrum of Kuiper belt object 1993SC was measured at the Keck Observatory in October 1996. It shows a strongly red continuum reflectance and several prominent infrared absorption features. The strongest absorptions in 1993SC's spectrum occur near 1.62, 1.79, 1.95, 2.20, and 2.32 micrometers in wavelength. Features near the same wavelengths in the spectra of Pluto and Neptune's satellite Triton are due to CH4 on their surfaces, suggesting the presence of a simple hydrocarbon ice such as CH4, C2H6, C2H4, or C2H2 on 1993SC. In addition, the red continuum reflectance of 1993SC suggests the presence of more complex hydrocarbons.


Subject(s)
Hydrocarbons/analysis , Meteoroids , Acetylene/analysis , Ethane/analysis , Ethylenes/analysis , Extraterrestrial Environment , Ice , Methane/analysis , Neptune , Nitrogen/analysis , Spectroscopy, Near-Infrared
15.
Science ; 206(4421): 995-6, 1979 Nov 23.
Article in English | MEDLINE | ID: mdl-17733922

ABSTRACT

As part of a continuing effort of ground-based support for Voyager target selection, infrared images in the 5-micrometer wavelength region were acquired in preparation for the Voyager 2 flyby of Jupiter. Observations were made during May 1979 from the Palomar 5-meter telescope and the new 3-meter NASA Infrared Telescope Facility at Mauna Kea and are compared to previous observations. Variations seen in the 5-micrometer flux distribution suggest global patterns of clouding over of some Jovian belts and clearing ofothers. These data were used to predict the Jovian cloud distribution at the time of the Voyager 2 encounter in order to target the imaging and infrared experiments to areas free of high obscuring clouds.

16.
Science ; 280(5368): 1430-2, 1998 May 29.
Article in English | MEDLINE | ID: mdl-9603731

ABSTRACT

Spectra of the Centaur 1997 CU26 were obtained at the Keck Observatory on 27 October 1997 (universal time). The data show strong absorptions at 1.52 and 2.03 micrometers attributable to water ice on the surface of 1997 CU26. The reflectance spectrum of 1997 CU26 is matched by the spectrum of a mixture of low-temperature, particulate water ice and spectrally featureless but otherwise red-colored material. Water ice dominates the spectrum of 1997 CU26, whereas methane or methane-like hydrocarbons apparently dominate the spectrum of the Kuiper belt object 1993 SC, perhaps indicating different origins, thermal histories, or both for these two objects.


Subject(s)
Jupiter , Solar System , Water , Hydrocarbons , Ice , Methane , Spectrophotometry, Infrared
17.
Science ; 261(5122): 742-5, 1993 Aug 06.
Article in English | MEDLINE | ID: mdl-17757211

ABSTRACT

The near-infrared spectrum of Triton reveals ices of nitrogen, methane, carbon monoxide, and carbon dioxide, of which nitrogen is the dominant component. Carbon dioxide ice may be spatially segregated from the other more volatile ices, covering about 10 percent of Triton's surface. The absence of ices of other hydrocarbons and nitriles challenges existing models of methane and nitrogen photochemistry on Triton.

18.
Science ; 261(5122): 745-8, 1993 Aug 06.
Article in English | MEDLINE | ID: mdl-17757212

ABSTRACT

Observations of the 1.4- to 2.4-micrometer spectrum of Pluto reveal absorptions of carbon monoxide and nitrogen ices and confirm the presence of solid methane. Frozen nitrogen is more abundant than the other two ices by a factor of about 50; gaseous nitrogen must therefore be the major atmospheric constituent. The absence of carbon dioxide absorptions is one of several differences between the spectra of Pluto and Triton in this region. Both worlds carry information about the composition of the solar nebula and the processes by which icy planetesimals formed.

19.
Science ; 204(4396): 1007-8, 1979 Jun 01.
Article in English | MEDLINE | ID: mdl-17800441

ABSTRACT

A coordinated program to observe Jupiter at high spatial resolution in the 5-micrometer wavelength region was undertaken to support Voyager 1 imaging and infrared radiation experiment targeting. Jupiter was observed over a 5-month period from Palomar and Mauna Kea observatories. The frequency of observations allowed the selection of interesting areas for closer Voyager examination and also provided good short-term monitoring of variations in cloud morphology. Significant global changes in the 5-micrometer distribution are seen over this time period.

20.
Astrobiology ; 19(7): 831-848, 2019 07.
Article in English | MEDLINE | ID: mdl-30907634

ABSTRACT

We present the case for the presence of complex organic molecules, such as amino acids and nucleobases, formed by abiotic processes on the surface and in near-subsurface regions of Pluto. Pluto's surface is tinted with a range of non-ice substances with colors ranging from light yellow to red to dark brown; the colors match those of laboratory organic residues called tholins. Tholins are broadly characterized as complex, macromolecular organic solids consisting of a network of aromatic structures connected by aliphatic bridging units (e.g., Imanaka et al., 2004; Materese et al., 2014, 2015). The synthesis of tholins in planetary atmospheres and in surface ices has been explored in numerous laboratory experiments, and both gas- and solid-phase varieties are found on Pluto. A third variety of tholins, exposed at a site of tectonic surface fracturing called Virgil Fossae, appears to have come from a reservoir in the subsurface. Eruptions of tholin-laden liquid H2O from a subsurface aqueous repository appear to have covered portions of Virgil Fossae and its surroundings with a uniquely colored deposit (D.P. Cruikshank, personal communication) that is geographically correlated with an exposure of H2O ice that includes spectroscopically detected NH3 (C.M. Dalle Ore, personal communication). The subsurface organic material could have been derived from presolar or solar nebula processes, or might have formed in situ. Photolysis and radiolysis of a mixture of ices relevant to Pluto's surface composition (N2, CH4, CO) have produced strongly colored, complex organics with a significant aromatic content having a high degree of nitrogen substitution similar to the aromatic heterocycles pyrimidine and purine (Materese et al., 2014, 2015; Cruikshank et al., 2016). Experiments with pyrimidines and purines frozen in H2O-NH3 ice resulted in the formation of numerous nucleobases, including the biologically relevant guanine, cytosine, adenine, uracil, and thymine (Materese et al., 2017). The red material associated with the H2O ice may contain nucleobases resulting from energetic processing on Pluto's surface or in the interior. Some other Kuiper Belt objects also exhibit red colors similar to those found on Pluto and may therefore carry similar inventories of complex organic materials. The widespread and ubiquitous nature of similarly complex organic materials observed in a variety of astronomical settings drives the need for additional laboratory and modeling efforts to explain the origin and evolution of organic molecules. Pluto observations reveal complex organics on a small body that remains close to its place of origin in the outermost regions of the Solar System.


Subject(s)
Atmosphere/analysis , Extraterrestrial Environment/chemistry , Pluto , Purines/analysis , Pyrimidines/analysis , Atmosphere/chemistry , Ice , Methane/analysis , Spectrophotometry, Infrared , Volatile Organic Compounds/analysis , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL