Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Clin Immunol ; 44(2): 42, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231436

ABSTRACT

BACKGROUND: Patients with partial DiGeorge syndrome (pDGS) can present with immune dysregulation, the most common being autoimmune cytopenia (AIC). There is a lack of consensus on the approach to type, combination, and timing of therapies for AIC in pDGS. Recognition of immune dysregulation early in pDGS clinical course may help individualize treatment and prevent adverse outcomes from chronic immune dysregulation. OBJECTIVES: Objectives of this study were to characterize the natural history, immune phenotype, and biomarkers in pDGS with AIC. METHODS: Data on clinical presentation, disease severity, immunological phenotype, treatment selection, and response for patients with pDGS with AIC were collected via retrospective chart review. Flow cytometric analysis was done to assess T and B cell subsets, including biomarkers of immune dysregulation. RESULTS: Twenty-nine patients with the diagnosis of pDGS and AIC were identified from 5 international institutions. Nineteen (62%) patients developed Evan's syndrome (ES) during their clinical course and twenty (69%) had antibody deficiency syndrome. These patients demonstrated expansion in T follicular helper cells, CD19hiCD21lo B cells, and double negative cells and reduction in CD4 naïve T cells and regulatory T cells. First-line treatment for 17/29 (59%) included corticosteroids and/or high-dose immunoglobulin replacement therapy. Other overlapping therapies included eltrombopag, rituximab, and T cell immunomodulators. CONCLUSIONS: AIC in pDGS is often refractory to conventional AIC treatment paradigms. Biomarkers may have utility for correlation with disease state and potentially even response to therapy. Immunomodulating therapies could be initiated early based on early immune phenotyping and biomarkers before the disease develops or significantly worsens.


Subject(s)
Cytopenia , DiGeorge Syndrome , Humans , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/therapy , Retrospective Studies , Antigens, CD19 , Disease Progression
3.
Front Immunol ; 15: 1423141, 2024.
Article in English | MEDLINE | ID: mdl-39055713

ABSTRACT

Background: Trichothiodystrophy-1 (TTD1) is an autosomal-recessive disease and caused by mutations in ERCC2, a gene coding for a subunit of the TFIIH transcription and nucleotide-excision repair (NER) factor. In almost half of these patients infectious susceptibility has been reported but the underlying molecular mechanism leading to immunodeficiency is largely unknown. Objective: The aim of this study was to perform extended molecular and immunological phenotyping in patients suffering from TTD1. Methods: Cellular immune phenotype was investigated using multicolor flow cytometry. DNA repair efficiency was evaluated in UV-irradiation assays. Furthermore, early BCR activation events and proliferation of TTD1 lymphocytes following DNA damage induction was tested. In addition, we performed differential gene expression analysis in peripheral lymphocytes of TTD1 patients. Results: We investigated three unrelated TTD1 patients who presented with recurrent infections early in life of whom two harbored novel ERCC2 mutations and the third patient is a carrier of previously described pathogenic ERCC2 mutations. Hypogammaglobulinemia and decreased antibody responses following vaccination were found. TTD1 B-cells showed accumulation of γ-H2AX levels, decreased proliferation activity and reduced cell viability following UV-irradiation. mRNA sequencing analysis revealed significantly downregulated genes needed for B-cell development and activation. Analysis of B-cell subpopulations showed low numbers of naïve and transitional B-cells in TTD1 patients, indicating abnormal B-cell differentiation in vivo. Conclusion: In summary, our analyses confirmed the pathogenicity of novel ERCC2 mutations and show that ERCC2 deficiency is associated with antibody deficiency most likely due to altered B-cell differentiation resulting from impaired BCR-mediated B-cell activation and activation-induced gene transcription.


Subject(s)
B-Lymphocytes , Mutation , Xeroderma Pigmentosum Group D Protein , Humans , B-Lymphocytes/immunology , Xeroderma Pigmentosum Group D Protein/genetics , Xeroderma Pigmentosum Group D Protein/deficiency , Male , Female , Trichothiodystrophy Syndromes/genetics , Trichothiodystrophy Syndromes/immunology , DNA Repair , Child , Lymphocyte Activation/genetics , Child, Preschool , Adolescent
SELECTION OF CITATIONS
SEARCH DETAIL