Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 586(7829): 412-416, 2020 10.
Article in English | MEDLINE | ID: mdl-33029011

ABSTRACT

An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory1-4. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories5-10. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF211. Phosphorylation of the α-subunit of eIF2 (p-eIF2α), the central component of the integrated stress response (ISR), impairs long-term memory formation in rodents and birds11-13. By contrast, inhibiting the ISR by mutating the eIF2α phosphorylation site, genetically11 and pharmacologically inhibiting the ISR kinases14-17, or mimicking reduced p-eIF2α with the ISR inhibitor ISRIB11, enhances long-term memory in health and disease18. Here we used molecular genetics to dissect the neuronal circuits by which the ISR gates cognitive processing. We found that learning reduces eIF2α phosphorylation in hippocampal excitatory neurons and a subset of hippocampal inhibitory neurons (those that express somatostatin, but not parvalbumin). Moreover, ablation of p-eIF2α in either excitatory or somatostatin-expressing (but not parvalbumin-expressing) inhibitory neurons increased general mRNA translation, bolstered synaptic plasticity and enhanced long-term memory. Thus, eIF2α-dependent mRNA translation controls memory consolidation via autonomous mechanisms in excitatory and somatostatin-expressing inhibitory neurons.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Hippocampus/cytology , Memory Consolidation , Neurons/metabolism , Somatostatin/metabolism , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Eukaryotic Initiation Factor-2/deficiency , Eukaryotic Initiation Factor-2/genetics , Excitatory Postsynaptic Potentials , Hippocampus/physiology , Long-Term Potentiation , Male , Memory, Long-Term , Mice , Mice, Inbred C57BL , Neural Inhibition , Neuronal Plasticity , Parvalbumins , Phosphorylation , Pyramidal Cells/physiology , Synaptic Transmission
2.
J Neuroinflammation ; 21(1): 185, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080670

ABSTRACT

BACKGROUND: Brain inflammation contributes significantly to the pathophysiology of Alzheimer's disease, and it is manifested by glial cell activation, increased production of cytokines/chemokines, and a shift in lipid mediators from a pro-homeostatic to a pro-inflammatory profile. However, whether the production of bioactive lipid mediators is affected at earlier stages, prior to the deposition of Aß plaques and tau hyperphosphorylation, is unknown. The differential contribution of an evolving amyloid and tau pathology on the composition and abundance of membrane phospholipids and bioactive lipid mediators also remains unresolved. METHODS: In this study, we examined the cortical levels of DHA- and AA-derived bioactive lipid mediators and of membrane phospholipids by liquid chromatography with tandem mass spectrometry in transgenic rat models of the Alzheimer's-like amyloid and tau pathologies at early and advanced pathological stages. RESULTS: Our findings revealed a complex balance between pro-inflammatory and pro-resolving processes in which tau pathology has a more pronounced effect compared to amyloid pathology. At stages preceding tau misfolding and aggregation, there was an increase in pro-resolving lipid mediators (RVD6 and NPD1), DHA-containing phospholipids and IFN-γ levels. However, in advanced tau pathology displaying NFT-like inclusions, neuronal death, glial activation and cognitive deficits, there was an increase in cytokine and PGD2, PGE2, and PGF2α generation accompanied by a drop in IFN-γ levels. This pathology also resulted in a marked increase in AA-containing phospholipids. In comparison, pre-plaque amyloid pathology already presented high levels of cytokines and AA-containing phospholipids together with elevated RVD6 and NPD1 levels. Finally, Aß plaque deposition was accompanied by a modest increase in prostaglandins, increased AA-containing phospholipids and reduced DHA-containing phospholipids. CONCLUSIONS: Our findings suggest a dynamic trajectory of inflammatory and lipid mediators in the evolving amyloid and tau pathologies and support their differing roles on membrane properties and, consequentially, on signal transduction.


Subject(s)
Alzheimer Disease , Brain , Disease Models, Animal , Phospholipids , Rats, Transgenic , tau Proteins , Animals , Phospholipids/metabolism , Rats , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , tau Proteins/metabolism , Brain/metabolism , Brain/pathology , Amyloid beta-Peptides/metabolism , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Male , Humans
3.
Neurobiol Dis ; 184: 106227, 2023 08.
Article in English | MEDLINE | ID: mdl-37454780

ABSTRACT

Tauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD), clinically present with progressive cognitive decline and the deposition of neurofibrillary tangles (NFTs) in the brain. Neurovascular compromise is also prevalent in AD and FTD however the relationship between tau and the neurovascular unit is less understood relative to other degenerative phenotypes. Current animal models confer the ability to recapitulate aspects of the CNS tauopathies, however, existing models either display overaggressive phenotypes, or do not develop neuronal loss or genuine neurofibrillary lesions. In this report, we communicate the longitudinal characterization of brain tauopathy in a novel transgenic rat model, coded McGill-R955-hTau. The model expresses the longest isoform of human P301S tau. Homozygous R955-hTau rats displayed a robust, progressive accumulation of mutated human tau leading to the detection of tau hyperphosphorylation and cognitive deficits accelerating from 14 months of age. This model features extensive tau hyperphosphorylation with endogenous tau recruitment, authentic neurofibrillary lesions, and tau-associated neuronal loss, ventricular dilation, decreased brain volume, and gliosis in aged rats. Further, we demonstrate how neurovascular integrity becomes compromised at aged life stages using a combination of electron microscopy, injection of the tracer horseradish peroxidase and immunohistochemical approaches.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Pick Disease of the Brain , Tauopathies , Mice , Humans , Rats , Animals , Aged , Rats, Transgenic , tau Proteins/genetics , Frontotemporal Dementia/pathology , Mice, Transgenic , Tauopathies/pathology , Alzheimer Disease/pathology , Neurofibrillary Tangles/pathology , Disease Models, Animal
4.
Neurobiol Dis ; 187: 106317, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37802153

ABSTRACT

In tauopathies such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), the microtubule associated protein tau undergoes conformational and posttranslational modifications in a gradual, staged pathological process. While brain atrophy and cognitive decline are well-established in the advanced stages of tauopathy, it is unclear how the early pathological processes manifest prior to extensive neurodegeneration. For these studies we have applied a transgenic rat model of human-like tauopathy in its heterozygous form, named McGill-R955-hTau. The goal of the present study was to investigate whether lifelong accumulation of mutated human tau could reveal the earliest tau pathological processes in a context of advanced aging, and, at stages before the overt aggregated or fibrillary tau deposition. We characterized the phenotype of heterozygous R955-hTau rats at three endpoints, 10, 18 and 24-26 months of age, focusing on markers of cognitive capabilities, progressive tau pathology, neuronal health, neuroinflammation and brain ultrastructural integrity, using immunohistochemistry and electron microscopy. Heterozygous R955-hTau transgenic rats feature a modest, life-long accumulation of mutated human tau that led to tau hyperphosphorylation and produced deficits in learning and memory tasks after 24 months of age. Such impairments coincided with more extensive tau hyperphosphorylation in the brain at residues pThr231 and with evidence of oligomerization. Importantly, aged R955-hTau rats presented evidence of neuroinflammation, detriments to myelin morphology and detectable hippocampal neuronal loss in the absence of overt neurofibrillary lesions and brain atrophy. The slow-progressing tauopathy of R955-hTau rats should allow to better delineate the temporal progression of tau pathological events and therefore to distinguish early indicators of tauopathy as having the capability to induce degenerative events in the aged CNS.


Subject(s)
Neuroinflammatory Diseases , Tauopathies , Humans , Mice , Rats , Animals , Aged , Mice, Transgenic , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism , Rats, Transgenic , Atrophy , Disease Models, Animal
5.
Brain ; 145(7): 2250-2275, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35289363

ABSTRACT

Currently, enhancement of cholinergic neurotransmission via cholinesterase inhibitors represents the main available approach to treat cognitive and behavioural symptoms of the early as well as late stages of Alzheimer's disease. Restoring the cholinergic system has been a primary means of improving cognition in Alzheimer's disease, as four of the six approved therapies are acetylcholinesterase inhibitors. Memantine is an N-methyl-d-aspartate antagonist with a well-documented clinical effect on behavioural symptoms, which is often added to cholinesterase inhibitors to potentiate their effect and aducanumab, targeting the amyloid pathology, has recently been approved. The early, progressive and selective degeneration of the cholinergic system together and its close relation to cognitive deficits supports the use of cholinergic therapy for Alzheimer's disease. This review provides an updated view of the basal forebrain cholinergic system, its relation to cognition and its relevance for therapy of Alzheimer's disease. It deals with the three main aspects that form the basis of the cholinergic-oriented therapy of Alzheimer's disease, its origin, its mechanism of action, its clinical effects, advantages and limits of a cholinergic therapeutic approach. It includes a new and updated overview of the involvement of muscarinic receptors in Alzheimer's disease as well as the recent development of new and highly selective M1 muscarinic receptor agonists with disease-modifying potential. It also addresses the discovery of a novel nerve growth factor metabolic pathway responsible for the trophic maintenance of the basal forebrain system and its deregulation in Alzheimer's disease. It discusses new clinical studies and provides evidence for the long-term efficacy of cholinesterase inhibitor therapy suggesting a disease-modifying effect of these drugs. The classical symptomatic cholinergic therapy based on cholinesterase inhibitors is judiciously discussed for its maximal efficacy and best clinical application. The review proposes new alternatives of cholinergic therapy that should be developed to amplify its clinical effect and supplement the disease-modifying effect of new treatments to slow down or arrest disease progression.


Subject(s)
Alzheimer Disease , Acetylcholinesterase , Alzheimer Disease/metabolism , Cholinergic Agents/therapeutic use , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Humans , Receptor, Muscarinic M1/metabolism
6.
Proc Natl Acad Sci U S A ; 117(12): 6844-6854, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32144141

ABSTRACT

Chronic inflammation during Alzheimer's disease (AD) is most often attributed to sustained microglial activation in response to amyloid-ß (Aß) plaque deposits and cell death. However, cytokine release and microgliosis are consistently observed in AD transgenic animal models devoid of such pathologies, bringing into question the underlying processes that may be at play during the earliest AD-related immune response. We propose that this plaque-independent inflammatory reaction originates from neurons burdened with increasing levels of soluble and oligomeric Aß, which are known to be the most toxic amyloid species within the brain. Laser microdissected neurons extracted from preplaque amyloid precursor protein (APP) transgenic rats were found to produce a variety of potent immune factors, both at the transcript and protein levels. Neuron-derived cytokines correlated with the extent of microglial activation and mobilization, even in the absence of extracellular plaques and cell death. Importantly, we identified an inflammatory profile unique to Aß-burdened neurons, since neighboring glial cells did not express similar molecules. Moreover, we demonstrate within disease-vulnerable regions of the human brain that a neuron-specific inflammatory response may precede insoluble Aß plaque and tau tangle formation. Thus, we reveal the Aß-burdened neuron as a primary proinflammatory agent, implicating the intraneuronal accumulation of Aß as a significant immunological component in the AD pathogenesis.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/pathology , Inflammation/pathology , Neurons/immunology , Plaque, Amyloid/pathology , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloidosis , Animals , Brain/immunology , Brain/metabolism , Disease Models, Animal , Female , Humans , Inflammation/immunology , Inflammation/metabolism , Male , Neurons/metabolism , Neurons/pathology , Plaque, Amyloid/immunology , Plaque, Amyloid/metabolism , Rats , Rats, Transgenic
7.
Alzheimers Dement ; 19(11): 4817-4827, 2023 11.
Article in English | MEDLINE | ID: mdl-37021589

ABSTRACT

BACKGROUND: Basal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. METHODS: We included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. RESULTS: In DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DISCUSSION: BF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.


Subject(s)
Alzheimer Disease , Basal Forebrain , Down Syndrome , Humans , Adult , Alzheimer Disease/pathology , Down Syndrome/diagnostic imaging , Down Syndrome/complications , Atrophy/pathology , Biomarkers/cerebrospinal fluid
8.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069333

ABSTRACT

This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were exposed to a control diet (CD) or an HFD based on corn oil, from young (rats) or adult (mice) ages for 24 or 10 weeks, respectively. In rats and mice, the HFD impaired reference memory in wild-type (WT) animals but did not worsen it in Tg, did not cause obesity, and did not increase triglycerides or glucose levels. Conversely, the HFD promoted stronger microglial activation in Tg vs. WT rats but had no effect on cerebral amyloid deposition. IFN-γ, IL-1ß, and IL-6 plasma levels were increased in Tg rats, regardless of diet, while CXCL1 chemokine levels were increased in HFD-fed mice, regardless of genotype. Hippocampal 3-nitrotyrosine levels tended to increase in HFD-fed Tg rats but not in mice. Overall, an HFD with an elevated omega-6-to-omega-3 ratio as compared to the CD (25:1 vs. 8.4:1) did not aggravate the outcome of AD regardless of the stage of amyloid pathology, suggesting that many neurobiological processes relevant to AD are not directly dependent on PUFA intake.


Subject(s)
Alzheimer Disease , Fatty Acids, Omega-3 , Mice , Rats , Animals , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/pathology , Mice, Transgenic , Amyloid , Disease Models, Animal , Rats, Transgenic , Diet, High-Fat
9.
Neuropathol Appl Neurobiol ; 48(6): e12835, 2022 10.
Article in English | MEDLINE | ID: mdl-35822518

ABSTRACT

AIMS: The locus coeruleus (LC) is the main source of noradrenaline (NA) in the mammalian brain and has been found to degenerate during the initial stages of Alzheimer's disease (AD). Recent studies indicate that at late stages of the amyloid pathology, LC-pathological alterations accelerate AD-like pathology progression by interfering with the neuromodulatory and anti-inflammatory properties of NA. However, the impact of LC degeneration at the earliest stages of amyloidosis on the AD-like pathology is not well understood. METHODS: The LC was lesioned in wild-type and McGill-R-Thy1-APP transgenic (APP tg) rats by administering N-(2-chloroethyl)-N-ethyl-bromo-benzylamine before amyloid plaque deposition. Cognitive deficits and AD-like neuropathological changes were measured after the LC lesion. RESULTS: Four months post-treatment, rats displayed a decrease in brain noradrenergic innervation. The LC lesion in APP tg-treated rats enhanced cognitive deficits and decreased hippocampal cholinergic innervation and neurotrophin expression. In addition, the APP tg-treated rats displayed an increased microglial and astroglial cell number in close vicinity to hippocampal amyloid-beta burdened neurons. The recruited microglia showed cellular alterations indicative of an intermediate activation state. CONCLUSIONS: Our results indicate that early LC demise aggravates the early neuroinflammatory process, cognitive impairments, cholinergic deficits and neurotrophin deregulation at the earliest stages of the human-like brain amyloidosis.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Amyloidosis/metabolism , Amyloidosis/pathology , Animals , Cholinergic Agents/metabolism , Cognition , Disease Models, Animal , Locus Coeruleus/metabolism , Nerve Growth Factors/metabolism , Norepinephrine/metabolism , Plaque, Amyloid/pathology , Rats , Rats, Transgenic
10.
Mol Psychiatry ; 26(10): 6023-6037, 2021 10.
Article in English | MEDLINE | ID: mdl-32488129

ABSTRACT

The NGF metabolic pathway entails the proteins that mature pro-nerve growth factor (proNGF) to NGF and those that degrade NGF. Basal forebrain cholinergic neurons require NGF for maintenance of cholinergic phenotype, are critical for cognition, and degenerate early in Alzheimer's disease (AD). In AD, NGF metabolism is altered, but it is not known whether this is an early phenomenon, nor how it relates to AD pathology and symptomology. We acquired dorsolateral/medial prefrontal cortex samples from individuals with Alzheimer's dementia, Mild Cognitive Impairment (MCI), or no cognitive impairment with high (HA-NCI) and low (LA-NCI) brain Aß from the Religious Orders Study. Cortical proNGF protein, but not mRNA, was higher in AD, MCI, and HA-NCI, while mature NGF was lower. Plasminogen protein was higher in MCI and AD brain tissue, with plasminogen mRNA not likewise elevated, suggesting diminished activation of the proNGF convertase, plasmin. The plasminogen activator tPA was lower in HA-NCI while neuroserpin, the CNS tPA inhibitor, was higher in AD and MCI cortical samples. Matrix metalloproteinase 9 (MMP9), which degrades NGF, was overactive in MCI and AD. Transcription of the MMP9 inhibitor TIMP1 was lower in HA-NCI. ProNGF levels correlated with plasminogen, neuroserpin, and VAChT while NGF correlated with MMP9 activity. In NCI, proNGF correlated with cerebral Aß and tau deposition and to cognitive performance. In summary, proNGF maturation is impaired in preclinical and clinical AD while mature NGF degradation is enhanced. These differences correlate with cognition, pathology, and cholinergic tone, and may suggest novel biomarkers and therapeutic targets.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/genetics , Brain/metabolism , Humans , Metabolic Networks and Pathways , Nerve Growth Factor/metabolism
11.
Mol Psychiatry ; 26(10): 5989-6001, 2021 10.
Article in English | MEDLINE | ID: mdl-32591633

ABSTRACT

Neurofilament light chain (NFL) measurement has been gaining strong support as a clinically useful neuronal injury biomarker for various neurodegenerative conditions. However, in Alzheimer's disease (AD), its reflection on regional neuronal injury in the context of amyloid pathology remains unclear. This study included 83 cognitively normal (CN), 160 mild cognitive impairment (MCI), and 73 AD subjects who were further classified based on amyloid-beta (Aß) status as positive or negative (Aß+ vs Aß-). In addition, 13 rats (5 wild type and 8 McGill-R-Thy1-APP transgenic (Tg)) were examined. In the clinical study, reduced precuneus/posterior cingulate cortex and hippocampal grey matter density were significantly associated with increased NFL concentrations in cerebrospinal fluid (CSF) or plasma in MCI Aß+ and AD Aß+. Moreover, AD Aß+ showed a significant association between the reduced grey matter density in the AD-vulnerable regions and increased NFL concentrations in CSF or plasma. Congruently, Tg rats recapitulated and validated the association between CSF NFL and grey matter density in the parietotemporal cortex, entorhinal cortex, and hippocampus in the presence of amyloid pathology. In conclusion, reduced grey matter density and elevated NFL concentrations in CSF and plasma are associated in AD-vulnerable regions in the presence of amyloid positivity in the AD clinical spectrum and amyloid Tg rat model. These findings further support the NFL as a neuronal injury biomarker in the research framework of AD biomarker classification and for the evaluation of therapeutic efficacy in clinical trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/genetics , Amyloid beta-Peptides , Animals , Atrophy , Biomarkers , Gray Matter/diagnostic imaging , Intermediate Filaments , Neurofilament Proteins , Rats , tau Proteins
12.
Chem Rev ; 120(23): 12757-12787, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33211489

ABSTRACT

Our understanding of lipid peroxidation in biology and medicine is rapidly evolving, as it is increasingly implicated in various diseases but also recognized as a key part of normal cell function, signaling, and death (ferroptosis). Not surprisingly, the root and consequences of lipid peroxidation have garnered increasing attention from multiple disciplines in recent years. Here we "connect the dots" between the fundamental chemistry underpinning the cascade reactions of lipid peroxidation (enzymatic or free radical), the reactive nature of the products formed (lipid-derived electrophiles), and the biological targets and mechanisms associated with these products that culminate in cellular responses. We additionally bring light to the use of highly sensitive, fluorescence-based methodologies. Stemming from the foundational concepts in chemistry and biology, these methodologies enable visualizing and quantifying each reaction in the cascade in a cellular and ultimately tissue context, toward deciphering the connections between the chemistry and physiology of lipid peroxidation. The review offers a platform in which the chemistry and biomedical research communities can access a comprehensive summary of fundamental concepts regarding lipid peroxidation, experimental tools for the study of such processes, as well as the recent discoveries by leading investigators with an emphasis on significant open questions.


Subject(s)
Alzheimer Disease/metabolism , Antioxidants/metabolism , Alzheimer Disease/pathology , Animals , Antioxidants/chemistry , Free Radicals/chemistry , Free Radicals/metabolism , Humans , Lipid Peroxidation
13.
J Neurochem ; 157(6): 2128-2144, 2021 06.
Article in English | MEDLINE | ID: mdl-33583024

ABSTRACT

Neuronal network dysfunction is a hallmark of Alzheimer's disease (AD). However, the underlying pathomechanisms remain unknown. We analyzed the hippocampal micronetwork in transgenic McGill-R-Thy1-APP rats (APPtg) at the beginning of extracellular amyloid beta (Aß) deposition. We established two-photon Ca2+ -imaging in vivo in the hippocampus of rats and found hyperactivity of CA1 neurons. Patch-clamp recordings in brain slices in vitro revealed increased neuronal input resistance and prolonged action potential width in CA1 pyramidal neurons. We did neither observe changes in synaptic inhibition, nor in excitation. Our data support the view that increased intrinsic excitability of CA1 neurons may precede inhibitory dysfunction at an early stage of Aß-deposition and disease progression.


Subject(s)
Alzheimer Disease/metabolism , Disease Models, Animal , Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Female , Hippocampus/pathology , Male , Organ Culture Techniques , Rats , Rats, Transgenic
14.
Neurobiol Dis ; 148: 105150, 2021 01.
Article in English | MEDLINE | ID: mdl-33130223

ABSTRACT

Matrix metalloproteinase-3 (MMP-3) has been associated with risk of Alzheimer's disease (AD). In this study we introduce a novel role for MMP-3 in degrading nerve growth factor (NGF) in vivo and examine its mRNA and protein expression across the continuum of AD pathology. We provide evidence that MMP-3 participates in the degradation of mature NGF in vitro and in vivo and that it is secreted from the rat cerebral cortex in an activity-dependent manner. We show that cortical MMP-3 is upregulated in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis. A similar upregulation was found in AD and MCI brains as well as in cognitively normal individuals with elevated amyloid deposition. We also observed that frontal cortex MMP-3 protein levels are higher in males. MMP-3 protein correlated with more AD neuropathology, markers of NGF metabolism, and lower cognitive scores in males but not in females. These results suggest that MMP-3 upregulation in AD might contribute to NGF dysmetabolism, and therefore to cholinergic atrophy and cognitive deficits, in a sex-specific manner. MMP-3 should be further investigated as a biomarker candidate or as a therapeutic target in AD.


Subject(s)
Alzheimer Disease/metabolism , Cerebral Cortex/metabolism , Matrix Metalloproteinase 3/genetics , Nerve Growth Factor/metabolism , Alzheimer Disease/pathology , Animals , Brain/metabolism , Brain/pathology , Cerebral Cortex/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Female , Male , Matrix Metalloproteinase 3/metabolism , Proteolysis , RNA, Messenger/metabolism , Rats , Rats, Transgenic , Sex Factors
15.
J Cell Sci ; 132(20)2019 10 22.
Article in English | MEDLINE | ID: mdl-31515277

ABSTRACT

The use of fixed fibroblasts from familial and sporadic Alzheimer's disease patients has previously indicated an upregulation of mitochondria-ER contacts (MERCs) as a hallmark of Alzheimer's disease. Despite its potential significance, the relevance of these results is limited because they were not extended to live neurons. Here we performed a dynamic in vivo analysis of MERCs in hippocampal neurons from McGill-R-Thy1-APP transgenic rats, a model of Alzheimer's disease-like amyloid pathology. Live FRET imaging of neurons from transgenic rats revealed perturbed 'lipid-MERCs' (gap width <10 nm), while 'Ca2+-MERCs' (10-20 nm gap width) were unchanged. In situ TEM showed no significant differences in the lipid-MERCs:total MERCs or lipid-MERCs:mitochondria ratios; however, the average length of lipid-MERCs was significantly decreased in neurons from transgenic rats as compared to controls. In accordance with FRET results, untargeted lipidomics showed significant decreases in levels of 12 lipids and bioenergetic analysis revealed respiratory dysfunction of mitochondria from transgenic rats. Thus, our results reveal changes in MERC structures coupled with impaired mitochondrial functions in Alzheimer's disease-related neurons.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Alzheimer Disease , Endoplasmic Reticulum , Mitochondria , Neurons , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Neurons/metabolism , Neurons/pathology , Rats , Rats, Transgenic
16.
J Neuroinflammation ; 18(1): 147, 2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34218796

ABSTRACT

BACKGROUND: Brain inflammation has been increasingly associated with early amyloid accumulation in Alzheimer's disease models; however, evidence of its occurrence in humans remains scarce. To elucidate whether amyloid deposition is associated with neuroinflammation and cognitive deficits, we studied brain inflammatory cytokine expression and cognitive decline in non-demented elderly individuals with and without cerebral amyloid-beta deposition. METHODS: Global cognition, episodic, working, and semantic memory, perceptual speed, visuospatial ability, and longitudinal decline (5.7 ± 3.6 years) in each cognitive domain were compared between elderly individuals (66-79 years) with and without cerebral amyloid-beta deposition. The expression of 20 inflammatory cytokines was analyzed in frozen temporal, parietal, and frontal cortices and compared between older individuals with and without amyloid-beta deposition in each brain region. Correlation analyses were performed to analyze associations between amyloid-beta load, cytokine expression, and cognitive decline. RESULTS: Individuals with cortical amyloid-beta deposition displayed deficits and a faster rate of cognitive decline in perceptual speed as compared with those individuals without amyloid-beta. This decline was positively associated with cortical amyloid-beta levels. Elderly individuals with amyloid-beta deposition had higher levels of IL-1ß, IL-6, and eotaxin-3 in the temporal cortex accompanied by an increase in MCP-1 and IL-1ß in the parietal cortex and a trend towards higher levels of IL-1ß and MCP-1 in the frontal cortex as compared with age-matched amyloid-free individuals. Brain IL-1ß levels displayed a positive association with cortical amyloid burden in each brain region. Finally, differential cytokine expression in each cortical region was associated with cognitive decline. CONCLUSIONS: Elderly individuals with amyloid-beta neuropathology but no symptomatic manifestation of dementia, exhibit cognitive decline and increased brain cytokine expression. Such observations suggest that increased cytokine expression might be an early event in the Alzheimer's continuum.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Cytokines/biosynthesis , Inflammation Mediators/metabolism , Aged , Amyloid beta-Peptides/analysis , Brain/pathology , Cognitive Dysfunction/pathology , Cytokines/analysis , Female , Humans , Inflammation Mediators/analysis , Longitudinal Studies , Male
17.
Brain ; 143(12): 3653-3671, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33206953

ABSTRACT

Epidemiological and experimental studies suggest that a disease-aggravating neuroinflammatory process is present at preclinical stages of Alzheimer's disease. Given that individuals with Down syndrome are at increased genetic risk of Alzheimer's disease and therefore develop the spectrum of Alzheimer's neuropathology in a uniform manner, they constitute an important population to study the evolution of neuroinflammation across the Alzheimer's continuum. Therefore, in this cross-sectional study, we characterized the brain inflammatory profile across the lifespan of individuals with Down syndrome. Microglial morphology and inflammatory cytokine expression were analysed by immunohistochemistry and electrochemiluminescent-based immunoassays in the frontal cortex from foetuses to adults with Down syndrome and control subjects (16 gestational weeks to 64 years), totalling 127 cases. Cytokine expression in mixed foetal primary cultures and hippocampus of adults with Down syndrome, as well as the effects of sex on cytokine expression were also analysed. A higher microglial soma size-to-process length ratio was observed in the frontal cortex of children and young adults with Down syndrome before the development of full-blown Alzheimer's pathology. Moreover, young adults with Down syndrome also displayed increased numbers of rod-like microglia. Increased levels of interleukin-8 and interleukin-10 were observed in children with Down syndrome (1-10 years; Down syndrome n = 5, controls n = 10) and higher levels of interleukin-1ß, interleukin-1α, interleukin-6, interleukin-8, interleukin-10, interleukin-15, eotaxin-3, interferon gamma-induced protein 10, macrophage-derived chemokine, and macrophage inflammatory protein-beta, were found in young adults with Down syndrome compared to euploid cases (13-25 years, Down syndrome n = 6, controls n = 24). Increased cytokine expression was also found in the conditioned media of mixed cortical primary cultures from second trimester foetuses with Down syndrome (Down syndrome n = 7, controls n = 7). Older adults with Down syndrome (39-68 years, Down syndrome n = 22, controls n = 16) displayed reduced levels of interleukin-10, interleukin-12p40, interferon-gamma and tumour necrosis factor-alpha. Microglia displayed larger somas and shorter processes. Moreover, an increase in dystrophic microglia and rod-like microglia aligning to neurons harbouring tau pathology were also observed. Sex stratification analyses revealed that females with Down syndrome had increased interleukin-6 and interleukin-8 levels compared to males with Down syndrome. Finally, multivariate projection methods identified specific cytokine patterns among individuals with Down syndrome. Our findings indicate the presence of an early and evolving neuroinflammatory phenotype across the lifespan in Down syndrome, a knowledge that is relevant for the discovery of stage-specific targets and for the design of possible anti-inflammatory trials against Alzheimer's disease in this population.


Subject(s)
Down Syndrome/pathology , Encephalitis/pathology , Adolescent , Aged , Aging/metabolism , Aging/pathology , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Cells, Cultured , Child , Child, Preschool , Cross-Sectional Studies , Cytokines/biosynthesis , Disease Progression , Female , Hippocampus/metabolism , Hippocampus/pathology , Humans , Infant , Infant, Newborn , Longevity , Male , Microglia/pathology , Middle Aged , Pregnancy , Tauopathies/pathology , Young Adult
18.
Adv Exp Med Biol ; 1331: 119-144, 2021.
Article in English | MEDLINE | ID: mdl-34453296

ABSTRACT

This chapter relates biographic personal and scientific interactions with Rita Levi-Montalcini. It highlights research from our laboratory inspired by Rita's fundamental discovery. This work from studies on potentially neuro-reparative gangliosides, their interactions with NGF, the role of exogenous NGF in the recovery of degenerating cholinergic neurons of the basal forebrain to the evidence that endogenous NGF maintains the "day-to-day" cortical synaptic phenotype and the discovery of a novel CNS "NGF metabolic pathway." This brain pathway's conceptual platform allowed the investigation of its status during the Alzheimer's disease (AD) pathology. This revealed a major compromise of the conversion of the NGF precursor molecule (proNGF) into the most biologically active molecule, mature NGF (mNGF). Furthermore, in this pathology, we found enhanced protein levels and enzymatic activity of the proteases responsible for the proteolytic degradation of mNGF. A biochemical prospect explaining the tropic factor vulnerability of the NGF-dependent basal forebrain cholinergic neurons and of their synaptic terminals. The NGF deregulation of this metabolic pathway is evident at preclinical stages and reflected in body fluid particularly in the cerebrospinal fluid (CSF). The findings of a deregulation of the NGF metabolic pathway and its reflection in plasma and CSF are opening doors for the development of novel biomarkers for preclinical detection of AD pathology both in Alzheimer's and in Down syndrome (DS) with "silent" AD pathology.


Subject(s)
Alzheimer Disease , Down Syndrome , Brain/metabolism , Cholinergic Neurons/metabolism , Humans , Nerve Growth Factor/metabolism
19.
Alzheimers Dement ; 17(4): 605-617, 2021 04.
Article in English | MEDLINE | ID: mdl-33226181

ABSTRACT

BACKGROUND: The discovery that nerve growth factor (NGF) metabolism is altered in Down syndrome (DS) and Alzheimer's disease (AD) brains offered a framework for the identification of novel biomarkers signalling NGF deregulation in AD pathology. METHODS: We examined levels of NGF pathway proteins (proNGF, neuroserpin, tissue plasminogen activator [tPA], and metalloproteases [MMP]) in matched cerebrospinal fluid (CSF)/plasma samples from AD-symptomatic (DSAD) and AD-asymptomatic (aDS) individuals with DS, as well as controls (HC). RESULTS: ProNGF and MMP-3 were elevated while tPA was decreased in plasma from individuals with DS. CSF from individuals with DS showed elevated proNGF, neuroserpin, MMP-3, and MMP-9. ProNGF and MMP-9 in CSF differentiated DSAD from aDS (area under the curve = 0.86, 0.87). NGF pathway markers associated with CSF amyloid beta and tau and differed by sex. DISCUSSION: Brain NGF metabolism changes can be monitored in plasma and CSF, supporting relevance in AD pathology. These markers could assist staging, subtyping, or precision medicine for AD in DS.


Subject(s)
Alzheimer Disease/diagnosis , Biomarkers , Down Syndrome/metabolism , Down Syndrome/physiopathology , Nerve Growth Factor/metabolism , Adult , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Brain/physiopathology , Down Syndrome/complications , Female , Humans , Male , Matrix Metalloproteinase 3/blood , Matrix Metalloproteinase 3/cerebrospinal fluid , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/cerebrospinal fluid , Middle Aged , Neuropeptides/blood , Neuropeptides/cerebrospinal fluid , Serpins/blood , Serpins/cerebrospinal fluid , Signal Transduction , tau Proteins/metabolism , Neuroserpin
20.
Neurobiol Dis ; 127: 323-338, 2019 07.
Article in English | MEDLINE | ID: mdl-30905766

ABSTRACT

The assembly of tau protein into abnormal filaments and brain cell degeneration are characteristic of a number of human neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17. Several murine models have been generated to better understand the mechanisms contributing to tau assembly and neurodegeneration. Taking advantage of the more elaborate central nervous system and higher cognitive abilities of the rat, we generated a model expressing the longest human tau isoform (2N4R) with the P301S mutation. This transgenic rat line, R962-hTau, exhibits the main features of human tauopathies, such as: age-dependent increase in inclusions comprised of aggregated-tau, neuronal loss, global neurodegeneration as reflected by brain atrophy and ventricular dilation, alterations in astrocytic and microglial morphology, and myelin loss. In addition, substantial deficits across multiple memory and learning paradigms, including novel object recognition, fear conditioning and Morris water maze tasks, were observed at the time of advanced tauopathy. These results support the concept that progressive tauopathy correlates with brain atrophy and cognitive impairment.


Subject(s)
Brain/pathology , Cognitive Dysfunction/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Brain/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Disease Models, Animal , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Rats , Rats, Transgenic , Tauopathies/genetics , Tauopathies/pathology , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL