Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Molecules ; 28(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770691

ABSTRACT

Carbon capture and storage (CCS) and carbon capture and utilization (CCU) are two kinds of strategies to reduce the CO2 concentration in the atmosphere, which is emitted from the burning of fossil fuels and leads to the greenhouse effect. With the unique properties of ionic liquids (ILs), such as low vapor pressures, tunable structures, high solubilities, and high thermal and chemical stabilities, they could be used as solvents and catalysts for CO2 capture and conversion into value-added chemicals. In this critical review, we mainly focus our attention on the tuning IL-based catalysts for CO2 conversion into quinazoline-2,4(1H,3H)-diones from o-aminobenzonitriles during this decade (2012~2022). Due to the importance of basicity and nucleophilicity of catalysts, kinds of ILs with basic anions such as [OH], carboxylates, aprotic heterocyclic anions, etc., for conversion CO2 and o-aminobenzonitriles into quinazoline-2,4(1H,3H)-diones via different catalytic mechanisms, including amino preferential activation, CO2 preferential activation, and simultaneous amino and CO2 activation, are investigated systematically. Finally, future directions and prospects for CO2 conversion by IL-based catalysts are outlined. This review is benefit for academic researchers to obtain an overall understanding of the synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and o-aminobenzonitriles by IL-based catalysts. This work will also open a door to develop novel IL-based catalysts for the conversion of other acid gases such as SO2 and H2S.

2.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36232702

ABSTRACT

The increasing concentration of CO2 in the atmosphere is related to global climate change. Carbon capture, utilization, and storage (CCUS) is an important technology to reduce CO2 emissions and to deal with global climate change. The development of new materials and technologies for efficient CO2 capture has received increasing attention among global researchers. Ionic liquids (ILs), especially functionalized ILs, with such unique properties as almost no vapor pressure, thermal- and chemical-stability, non-flammability, and tunable properties, have been used in CCUS with great interest. This paper focuses on the development of functionalized ILs for CO2 capture in the past decade (2012~2022). Functionalized ILs, or task-specific ILs, are ILs with active sites on cations or/and anions. The main contents include three parts: cation-functionalized ILs, anion-functionalized ILs, and cation-anion dual-functionalized ILs for CO2 capture. In addition, classification, structures, and synthesis of functionalized ILs are also summarized. Finally, future directions, concerns, and prospects for functionalized ILs in CCUS are discussed. This review is beneficial for researchers to obtain an overall understanding of CO2-philic ILs. This work will open a door to develop novel IL-based solvents and materials for the capture and separation of other gases, such as SO2, H2S, NOx, NH3, and so on.


Subject(s)
Ionic Liquids , Anions/chemistry , Carbon , Carbon Dioxide/chemistry , Cations/chemistry , Ionic Liquids/chemistry , Solvents/chemistry
3.
Angew Chem Int Ed Engl ; 58(2): 386-389, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30536683

ABSTRACT

The water content is crucial to the preparation of [P4442 ][Suc] and its capture of CO2 . The use of a large amount of water in the preparation of this ionic liquid results in the significant formation of the byproduct succinamate anions and difficulties in water removal, which strongly reduces the capacity of CO2 absorption through a bicarbonate mechanism. By contrast, the addition of a small amount of water maintains a high absorption capacity through cooperation.

4.
Chem Soc Rev ; 45(15): 4307-39, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27243042

ABSTRACT

Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

5.
Angew Chem Int Ed Engl ; 56(43): 13293-13297, 2017 10 16.
Article in English | MEDLINE | ID: mdl-28857376

ABSTRACT

A novel strategy based on the concept of preorganization and cooperation has been designed for a superior capacity to capture low-concentration CO2 by imide-based ionic liquids. By using this strategy, for the first time, an extremely high gravimetric CO2 capacity of up to 22 wt % (1.65 mol mol-1 ) and excellent reversibility (16 cycles) have been achieved from 10 vol. % of CO2 in N2 when using an ionic liquid having a preorganized anion. Through a combination of quantum-chemical calculations and spectroscopic investigations, it is suggested that cooperative interactions between CO2 and multiple active sites in the preorganized anion are the driving force for the superior CO2 capacity and excellent reversibility.

6.
Angew Chem Int Ed Engl ; 56(47): 14958-14962, 2017 11 20.
Article in English | MEDLINE | ID: mdl-28994185

ABSTRACT

Porous liquids are a newly developed porous material that combine unique fluidity with permanent porosity, which exhibit promising functionalities for a variety of applications. However, the apparent incompatibility between fluidity and permanent porosity makes the stabilization of porous nanoparticle with still empty pores in the dense liquid phase a significant challenging. Herein, by exploiting the electrostatic interaction between carbon networks and polymerized ionic liquids, we demonstrate that carbon-based porous nanoarchitectures can be well stabilized in liquids to afford permanent porosity, and thus opens up a new approach to prepare porous carbon liquids. Furthermore, we hope this facile synthesis strategy can be widely applicated to fabricate other types of porous liquids, such as those (e.g., carbon nitride, boron nitride, metal-organic frameworks, covalent organic frameworks etc.) also having the electrostatic interaction with polymerized ionic liquids, evidently advancing the development and understanding of porous liquids.

7.
Phys Chem Chem Phys ; 18(42): 29192-29198, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27731441

ABSTRACT

Thermo-responsive materials with reversible phase transition in molecular solvents are of great importance for catalysis reaction, product separation, and catalyst recycling among others. In this work, liquid-liquid phase transition of PEG-functionalized ionic liquids [PEGm(mim)2][NTf2]2 (m = 200, 400, 600, 800, 1000) in aliphatic alcohol (ethanol, 1-propanol or isopropanol) and in aqueous aliphatic alcohol was investigated by turbidity and dynamic light scattering (DLS) measurements, and the effects of the alkyl chain length of the alcohol molecules and molecular weight of the PEG middle block of the ionic liquids on the phase transition behaviour were examined. It was found that these ionic liquids exhibited a unique UCST phase transition in the aliphatic alcohol, but their liquid-liquid phase transition behaviour could be tuned precisely from UCST to LCST in aqueous aliphatic alcohol. Furthermore, temperature-dependent FT-IR and/or 1H NMR measurements were performed to understand the possible origin of phase behavior of both [PEGm(mim)2][NTf2]2 in the aliphatic alcohol and [PEG800(mim)2][NTf2]2 in ethanol-d6/H2O.

8.
Angew Chem Int Ed Engl ; 55(28): 7934-8, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27187750

ABSTRACT

The separation and recycling of catalyst and cocatalyst from the products and solvents are of critical importance. In this work, a class of functionalized ionic liquids (ILs) were designed and synthesized, and by tuning the hydrophilicity and hydrophobicity of cation and anion, respectively, these ILs could reversibly transfer between water and organics triggered upon undergoing a temperature change. From a combination of multiple spectroscopic techniques, it was shown that the driving force behind the transfer was originated from a change in conformation of the PEG chain of the IL upon temperature variation. By utilizing the novel property of this class of ILs, a highly efficient and controllable CuI-catalyzed cycloaddition reaction was achieved wherein the IL was used to entrain, activate, and recycle the catalyst, as well as to control the reaction.

9.
Chemistry ; 21(14): 5632-9, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25688867

ABSTRACT

A new approach has been developed to improve SO2 sorption by cyano-containing ionic liquids (ILs) through tuning the basicity of ILs and cyano-sulfur interaction. Several kinds of cyano-containing ILs with different basicity were designed, prepared, and used for SO2 capture. The interaction between these cyano-containing ILs and SO2 was investigated by FTIR and NMR methods. Spectroscopic investigations and quantum chemical calculations showed that dramatic effects on SO2 capacity originate from the basicity of the ILs and enhanced cyano-sulfur interaction. Furthermore, the captured SO2 was easy to release by heating or bubbling N2 through the ILs. This efficient and reversible process, achieved by tuning the basicity of ILs, is an excellent alternative to current technologies for SO2 capture.

10.
Angew Chem Int Ed Engl ; 54(25): 7265-9, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25925191

ABSTRACT

Ionic liquids (ILs) with a reversible hydrophobic-hydrophilic transition were developed, and they exhibited unique phase behavior with H2O: monophase in the presence of CO2, but biphase upon removal of CO2 at room temperature and atmospheric pressure. Thus, coupling of reaction, separation, and recovery steps in sustainable chemical processes could be realized by a reversible liquid-liquid phase transition of such IL-H2O mixtures. Spectroscopic investigations and DFT calculations showed that the mechanism behind hydrophobic-hydrophilic transition involved reversible reaction of CO2 with anion of the ILs and formation of hydrophilic ammonium salts. These unique IL-H2O systems were successfully utilized for facile one-step synthesis of Au porous films by bubbling CO2 under ambient conditions. The Au porous films and the ILs were then separated simultaneously from aqueous solutions by bubbling N2, and recovered ILs could be directly reused in the next process.

11.
Angew Chem Int Ed Engl ; 53(27): 7053-7, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24899207

ABSTRACT

A strategy for improving CO2 capture by new anion-functionalized ionic liquids (ILs) making use of multiple site cooperative interactions is reported. An extremely high capacity of up to 1.60 mol CO2 per mol IL and excellent reversibility were achieved by introducing a nitrogen-based interacting site on the phenolate and imidazolate anion. Quantum-chemical calculations, spectroscopic investigations, and calorimetric data demonstrated that multiple-site cooperative interactions between two kinds of interacting sites in the anion and CO2 resulted in superior CO2 capacities, which originated from the π-electron delocalization in the pyridine ring.


Subject(s)
Carbon Dioxide/chemistry , Ionic Liquids/chemistry , Pyridines/chemistry , Anions/chemistry , Quantum Theory , Temperature
12.
Angew Chem Int Ed Engl ; 52(40): 10620-4, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23939870

ABSTRACT

You can have your cake and eat it too: A "dual-tuning" strategy for improving the capture of SO2 was developed by introducing electron-withdrawing sites on the anions to produce several kinds of functionalized ionic liquids. Those functionalized with a halogen group exhibited improved performance over their non-halogenated counterparts, leading to highly efficient and reversible capture.


Subject(s)
Ionic Liquids/chemistry , Sulfur Dioxide/chemistry , Anions/chemistry , Halogens/chemistry
13.
Nanomaterials (Basel) ; 12(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36296805

ABSTRACT

CO2, an acidic gas, is usually emitted from the combustion of fossil fuels and leads to the formation of acid rain and greenhouse effects. CO2 can be used to produce kinds of value-added chemicals from a viewpoint based on carbon capture, utilization, and storage (CCUS). With the combination of unique structures and properties of ionic liquids (ILs) and covalent organic frameworks (COFs), covalent organic frameworks with ionic liquid-moieties (ILCOFs) have been developed as a kind of novel and efficient sorbent, catalyst, and electrolyte since 2016. In this critical review, we first focus on the structures and synthesis of different kinds of ILCOFs materials, including ILCOFs with IL moieties located on the main linkers, on the nodes, and on the side chains. We then discuss the ILCOFs for CO2 capture and conversion, including the reduction and cycloaddition of CO2. Finally, future directions and prospects for ILCOFs are outlined. This review is beneficial for academic researchers in obtaining an overall understanding of ILCOFs and their application of CO2 conversion. This work will open a door to develop novel ILCOFs materials for the capture, separation, and utilization of other typical acid, basic, or neutral gases such as SO2, H2S, NOx, NH3, and so on.

14.
J Am Chem Soc ; 133(31): 11916-9, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21751802

ABSTRACT

A novel strategy for SO(2) capture through multiple-site absorption in the anion of several azole-based ionic liquids is reported. An extremely high capacity of SO(2) (>3.5 mol/mol) and excellent reversibility (28 recycles) were achieved by tuning the interaction between the basic anion and acidic SO(2). Spectroscopic investigations and quantum-mechanical calculations showed that such high SO(2) capacity originates from the multiple sites of interaction between the anion and SO(2). These tunable azole-based ionic liquids with multiple sites offer significant improvements over commonly used absorbents, indicating the promise for industrial applications in acid gas separation.

15.
RSC Adv ; 9(4): 1882-1888, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-35516128

ABSTRACT

In this contribution, two kinds of amido-containing anion-functionalized ionic liquids (ILs) were designed and synthesized, where the anions of these ILs were selected from deprotonated succinimide (H-Suc) and o-phthalimide (Ph-Suc). Then, these functionalized ILs were used to capture CO2. Towards to this end, solubility of CO2 in the ILs was determined at different temperatures and different CO2 partial pressures. Based on these data, chemical equilibrium constants of CO2 with the ILs were derived at different temperatures from the "deactivated IL" model. The other thermodynamic properties such as reaction Gibbs energy, reaction enthalpy, and reaction entropy in the absorption were also calculated from the corresponding equilibrium constant data at different temperatures. It was shown that these anion-functionalized ILs exhibited high CO2 solubility (up to 0.95 mol CO2 mol-1 IL) and low energy desorption, and enthalpy change was the main driving force for CO2 capture by using such ILs as absorbents. In addition, the interactions of CO2 with the ILs were also investigated by 1H NMR, 13C NMR, and FT-IR spectroscopy.

16.
Nanoscale ; 11(4): 1515-1519, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30648721

ABSTRACT

Porous liquids, as a newly emerging type of porous material, have great potential in gas separation and storage. However, the examples and synthetic strategies reported so far likely represent only the tip of the iceberg due to the great difficulty and challenge in engineering permanent porosity in liquid matrices. Here, by taking advantage of the hydrogen bonding interaction between the alkane chains of branched ionic liquids and the Brønsted sites in H-form zeolites, as well as the mechanical bond of the long alkyl chain of the cation penetrated into the zeolite channel at the interface, the H-form zeolites can be uniformly stabilized in branched ionic liquids to form porous liquid zeolites, which not only significantly improve their gas sorption performance, but also change the gas sorption-desorption behavior because of the preserved permanent porosity. Furthermore, such a facile synthetic strategy can be extended to fabricate other types of H-form zeolite-based porous liquids by taking advantage of the tunability of the counter-anion (e.g., NTf2-, BF4-, EtSO4-, etc.) in branched ionic liquids, thus opening up new opportunities for porous liquids for specific applications in energy and environment.

17.
Chem Asian J ; 12(21): 2863-2872, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28840652

ABSTRACT

A new strategy involving the computer-assisted design of substituted imidazolate-based ionic liquids (ILs) through tuning the absorption enthalpy as well as the basicity of the ILs to improve SO2 capture, CO2 capture, and SO2 /CO2 selectivity was explored. The best substituted imidazolate-based ILs as absorbents for different applications were first predicted. During absorption, high SO2 capacities up to ≈5.3 and 2.4 molSO2 molIL-1 could be achieved by ILs with the methylimidazolate anions under 1.0 and 0.1 bar (1 bar=0.1 MPa), respectively, through tuning multiple N⋅⋅⋅S interactions between SO2 and the N atoms in the imidazolate anion with different substituents. In addition, CO2 capture by the imidazolate-based ILs could also be easily tuned through changing the substituents of the ILs, and 4-bromoimidazolate IL showed a high CO2 capacity but a low absorption enthalpy. Furthermore, a high selectivity for SO2 /CO2 could be reached by IL with 4,5-dicyanoimidazolate anion owing to its high SO2 capacity but low CO2 capacity. The results put forward in this work are in good agreement with the predictions. Quantum-chemical calculations and FTIR and NMR spectroscopy analysis methods were used to discuss the SO2 and CO2 absorption mechanisms.

18.
Chem Commun (Camb) ; 49(12): 1166-8, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23169110

ABSTRACT

A strategy to improve SO(2) capture through tuning the electronegativity of the interaction site in ILs has been presented. Two types of imidazolium ionic liquids that include less electronegative sulfur or carbon sites were used for the capture of SO(2), which exhibit extremely highly available capacity, rapid absorption rate and excellent reversibility.


Subject(s)
Ionic Liquids/chemistry , Sulfur Dioxide/chemistry , Absorption , Anions/chemistry , Imidazoles/chemistry , Temperature , Thermodynamics
19.
Chem Commun (Camb) ; 48(20): 2633-5, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22245923

ABSTRACT

Two kinds of dual functionalized ionic liquids with ether-functionalized cations and tetrazolate anions were designed, prepared, and used for SO(2) capture, which exhibit an extremely high SO(2) capacity and excellent reversibility through a combination of chemical and physical absorption.


Subject(s)
Ionic Liquids/chemistry , Sulfur Dioxide/chemistry , Absorption , Ether/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Spectroscopy, Fourier Transform Infrared
20.
Chem Commun (Camb) ; 48(52): 6526-8, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22622708

ABSTRACT

A series of novel alkanolamine-based ionic liquids show a highly efficient and excellent reversible capture of CO(2) through multidentate cation coordination between alkanolamine and Li(+) ion in a quasi-aza-crown ether fashion.

SELECTION OF CITATIONS
SEARCH DETAIL