Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nucleic Acids Res ; 51(19): 10768-10781, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37739431

ABSTRACT

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.


Subject(s)
Protein Biosynthesis , Serine-tRNA Ligase , Humans , Codon, Nonsense , Codon, Terminator , RNA, Messenger/metabolism , Selenocysteine/genetics , Selenocysteine/metabolism , Selenoproteins/genetics , Serine-tRNA Ligase/genetics
2.
Nucleic Acids Res ; 49(7): 3603-3616, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33341895

ABSTRACT

During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation. To explore this, we generated mammalian cells in which arginyl-tRNA synthetase and/or glutaminyl-tRNA synthetase were absent from the MSC. Protein synthesis, under a variety of stress conditions, was unchanged. Most strikingly, levels of charged tRNAArg and tRNAGln remained unchanged and no ribosome pausing was observed at codons for arginine and glutamine. Thus, increasing or regulating protein synthesis efficiency is not dependent on arginyl-tRNA synthetase and glutaminyl-tRNA synthetase in the MSC. Alternatively, and consistent with previously reported ex-translational roles requiring changes in synthetase cellular localizations, our manipulations of the MSC visibly changed localization.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Protein Biosynthesis , RNA, Transfer, Arg/metabolism , RNA, Transfer, Gln/metabolism , Ribosomes/metabolism , Animals , Fibroblasts , HEK293 Cells , Humans , Mice
3.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108225

ABSTRACT

R-loops are three-stranded DNA/RNA hybrids that form by the annealing of the mRNA transcript to its coding template while displacing the non-coding strand. While R-loop formation regulates physiological genomic and mitochondrial transcription and DNA damage response, imbalanced R-loop formation can be a threat to the genomic integrity of the cell. As such, R-loop formation is a double-edged sword in cancer progression, and perturbed R-loop homeostasis is observed across various malignancies. Here, we discuss the interplay between R-loops and tumor suppressors and oncogenes, with a focus on BRCA1/2 and ATR. R-loop imbalances contribute to cancer propagation and the development of chemotherapy drug resistance. We explore how R-loop formation can cause cancer cell death in response to chemotherapeutics and be used to circumvent drug resistance. As R-loop formation is tightly linked to mRNA transcription, their formation is unavoidable in cancer cells and can thus be explored in novel cancer therapeutics.


Subject(s)
Neoplasms , R-Loop Structures , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Carrier Proteins/metabolism , BRCA2 Protein/genetics , RNA/metabolism , RNA, Messenger , Neoplasms/drug therapy , Neoplasms/genetics , Genomic Instability
4.
J Biol Chem ; 293(34): 13151-13165, 2018 08 24.
Article in English | MEDLINE | ID: mdl-29967063

ABSTRACT

Protein activity is often regulated by altering the oligomerization state. One mechanism of multimerization involves domain swapping, wherein proteins exchange parts of their structures and thereby form long-lived dimers or multimers. Domain swapping has been specifically observed in amyloidogenic proteins, for example the cystatin superfamily of cysteine protease inhibitors. Cystatins are twin-headed inhibitors, simultaneously targeting the lysosomal cathepsins and legumain, with important roles in cancer progression and Alzheimer's disease. Although cystatin E is the most potent legumain inhibitor identified so far, nothing is known about its propensity to oligomerize. In this study, we show that conformational destabilization of cystatin E leads to the formation of a domain-swapped dimer with increased conformational stability. This dimer was active as a legumain inhibitor by forming a trimeric complex. By contrast, the binding sites toward papain-like proteases were buried within the cystatin E dimer. We also showed that the dimers could further convert to amyloid fibrils. Unexpectedly, cystatin E amyloid fibrils contained functional protein, which inhibited both legumain and papain-like enzymes. Fibril formation was further regulated by glycosylation. We speculate that cystatin amyloid fibrils might serve as a binding platform to stabilize the pH-sensitive legumain and cathepsins in the extracellular environment, contributing to their physiological and pathological functions.


Subject(s)
Amyloid/chemistry , Cystatin M/chemistry , Cystatin M/metabolism , Papain/antagonists & inhibitors , Protein Multimerization , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation , Structure-Activity Relationship
5.
Chembiochem ; 18(6): 523-526, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28098422

ABSTRACT

Selective inhibition of the immunoproteasome is a promising approach towards the development of immunomodulatory drugs. Recently, a class of substituted thiazole compounds that combine a nonpeptidic scaffold with the absence of an electrophile was reported in a patent. Here, we investigated the mode of action of the lead compound by using a sophisticated chimeric yeast model of the human immunoproteasome for structural studies. The inhibitor adopts a unique orientation perpendicular to the ß5i substrate-binding channel. Distinct interactions between the inhibitor and the subpockets of the human immunoproteasome account for its isotype selectivity.


Subject(s)
Immunologic Factors/chemistry , Models, Molecular , Oligopeptides/chemistry , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Humans , Molecular Structure , Peptides/chemistry , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism
6.
Hepatology ; 61(1): 238-48, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25131778

ABSTRACT

UNLABELLED: Due to its ability to inhibit prometastatic matrix metalloproteinases, tissue inhibitor of metalloproteinases (TIMP)-1 has been thought to suppress tumor metastasis. However, elevated systemic levels of TIMP-1 correlate with poor prognosis in cancer patients, suggesting a metastasis-stimulating role of TIMP-1. In colorectal cancer patients, tumor as well as plasma TIMP-1 levels were correlated with synchronous liver metastasis or distant metastasis-associated disease relapse. In mice, high systemic TIMP-1 levels increased the liver susceptibility towards metastasis by triggering the formation of a premetastatic niche. This promoted hepatic metastasis independent of origin or intrinsic metastatic potential of tumor cells. High systemic TIMP-1 led to increased hepatic SDF-1 levels, which in turn promoted recruitment of neutrophils to the liver. Both inhibition of SDF-1-mediated neutrophil recruitment and systemic depletion of neutrophils reduced TIMP-1-induced increased liver susceptibility towards metastasis. This indicates a crucial functional role of neutrophils in the TIMP-1-induced premetastatic niche. CONCLUSION: Our results identify TIMP-1 as an essential promoter of hepatic premetastatic niche formation.


Subject(s)
Carcinoma/secondary , Chemokine CXCL12/metabolism , Liver Neoplasms/secondary , Neutrophil Infiltration , Receptors, CXCR4/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Animals , Carcinoma/blood , Cell Line, Tumor , Humans , Liver/immunology , Liver/metabolism , Liver Neoplasms/blood , Mice , Mice, Inbred Strains , NIH 3T3 Cells , Tissue Inhibitor of Metalloproteinase-1/blood
7.
Angew Chem Int Ed Engl ; 55(42): 13330-13334, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27709817

ABSTRACT

Electrophiles are commonly used for the inhibition of proteases. Notably, inhibitors of the proteasome, a central determinant of cellular survival and a target of several FDA-approved drugs, are mainly characterized by the reactivity of their electrophilic head groups. We aimed to tune the inhibitory strength of peptidic sulfonate esters by varying the leaving groups. Indeed, proteasome inhibition correlated well with the pKa of the leaving group. The use of fluorophores as leaving groups enabled us to design probes that release a stoichiometric fluorescence signal upon reaction, thereby directly linking proteasome inactivation to the readout. This principle could be applicable to other sulfonyl fluoride based inhibitors and allows the design of sensitive probes for enzymatic studies.


Subject(s)
Fluorescence , Fluorescent Dyes/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Sulfinic Acids/pharmacology , Fluorescent Dyes/chemistry , Humans , Molecular Structure , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Sulfinic Acids/chemistry
8.
Int J Cancer ; 136(10): 2304-15, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25354204

ABSTRACT

The tetraspanin CD63 is implicated in pro-metastatic signaling pathways but, so far, it is unclear, how CD63 levels affect the tumor cell phenotype. Here, we investigated the effect of CD63 modulation in different metastatic tumor cell lines. In vitro, knock down of CD63 induced a more epithelial-like phenotype concomitant with increased E-cadherin expression, downregulation of its repressors Slug and Zeb1, and decreased N-cadherin. In addition, ß-catenin protein was markedly reduced, negatively affecting expression of the target genes MMP-2 and PAI-1. ß-catenin inhibitors mimicked the epithelial phenotype induced by CD63 knock down. Inhibition of ß-catenin upstream regulators PI3K/AKT or GSK3ß could rescue the mesenchymal phenotype underlining the importance of the ß-catenin pathway in CD63-regulated cell plasticity. CD63 knock down-induced phenotypical changes correlated with a decrease of experimental metastasis whereas CD63 overexpression enhanced the tumor cell-intrinsic metastatic potential. Taken together, our data show that CD63 is a crucial player in the regulation of the tumor cell-intrinsic metastatic potential by affecting cell plasticity.


Subject(s)
Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Tetraspanin 30/metabolism , beta Catenin/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Molecular Sequence Data , Signal Transduction , Tetraspanin 30/genetics
9.
Haematologica ; 100(8): 1005-13, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26001794

ABSTRACT

The homeostasis of neutrophil granulocytes can affect the outcome of several inflammation-associated diseases including cancer. The regulation of this homeostasis is still not completely understood. We previously found that elevated systemic levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) induce an increase of neutrophils in the liver, which in turn strongly promotes liver metastasis. Here, we report that increasing systemic TIMP-1 levels were sufficient to induce neutrophilia in mice. This was not attributed to prolonged survival or direct mobilization of neutrophils. However, TIMP-1 induced enrichment of myeloid progenitors and concomitant upregulation of granulopoiesis-associated genes in the bone marrow compartment. BrdU pulse-labeling confirmed that proliferating progenitors accounted for TIMP-1-induced neutrophilia. TIMP-1 variants that dissect its protease-inhibitory from its CD63 binding function relevant for cell signaling revealed that the TIMP-1 signaling domain was necessary and sufficient to augment granulopoiesis. Consequently, ablation of the TIMP-1 receptor CD63 abolished both neutrophilia and TIMP-1-enhanced granulopoiesis in the bone marrow. Our findings reveal that elevated levels of TIMP-1 impact on neutrophil homeostasis via signaling through CD63. This may provide a link to clinical observations, where TIMP-1 correlates with high severity and bad prognosis in inflammation-associated diseases.


Subject(s)
Granulocytes , Leukocytosis/metabolism , Myelopoiesis , Neutrophils , Signal Transduction , Tetraspanin 30/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Animals , Cell Line, Tumor , Cell Survival/genetics , Chemotaxis, Leukocyte/genetics , Leukocyte Count , Leukocytosis/genetics , Mice , Mice, Knockout , Myelopoiesis/genetics , Tissue Inhibitor of Metalloproteinase-1/blood , Tissue Inhibitor of Metalloproteinase-1/genetics
10.
Angew Chem Int Ed Engl ; 54(52): 15888-91, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26563572

ABSTRACT

Clinically applied proteasome inhibitors induce cell death by concomitant blockage of constitutive and immunoproteasomes. In contrast, selective immunoproteasome inhibition is less cytotoxic and has the potential to modulate chronic inflammation and autoimmune diseases. In this study, we rationally designed decarboxylated peptides that covalently target a non-catalytic cysteine of the immunoproteasome subunit ß5i with α-chloroacetamide-containing sidechains. The enhanced isoform specificity decreased cytotoxic effects and the compound suppressed the production of inflammatory cytokines. Structure-based optimization led to over 150-fold selectivity for subunit ß5i over ß5c. This new compound class provides a promising starting point for the development of selective immunoproteasome inhibitors as potential anti-inflammatory agents.


Subject(s)
Cysteine Proteinase Inhibitors/pharmacology , Cysteine/chemistry , Proteasome Endopeptidase Complex/drug effects , Catalysis
11.
Angew Chem Int Ed Engl ; 53(6): 1679-83, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24403024

ABSTRACT

The ubiquitin-proteasome system (UPS) has been successfully targeted by both academia and the pharmaceutical industry for oncological and immunological applications. Typical proteasome inhibitors are based on a peptidic backbone endowed with an electrophilic C-terminus by which they react with the active proteolytic sites. Although the peptide moiety has attracted much attention in terms of subunit selectivity, the target specificity and biological stability of the compounds are largely determined by the reactive warheads. In this study, we have carried out a systematic investigation of described electrophiles by a combination of in vitro, in vivo, and structural methods in order to disclose the implications of altered functionality and chemical reactivity. Thereby, we were able to introduce and characterize the class of α-ketoamides as the most potent reversible inhibitors with possible applications for the therapy of solid tumors as well as autoimmune disorders.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Binding Sites , Boronic Acids/chemistry , Boronic Acids/metabolism , Bortezomib , Catalytic Domain , Crystallography, X-Ray , HeLa Cells , Humans , Leupeptins/chemistry , Leupeptins/metabolism , Molecular Dynamics Simulation , Oligopeptides/chemistry , Oligopeptides/metabolism , Peptides/chemistry , Peptides/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/metabolism , Protein Binding , Pyrazines/chemistry , Pyrazines/metabolism
12.
Angew Chem Int Ed Engl ; 53(44): 11969-73, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25244435

ABSTRACT

The concept of proteasome inhibition ranks among the latest achievements in the treatment of blood cancer and represents a promising strategy for modulating autoimmune diseases. In this study, we describe peptidic sulfonyl fluoride inhibitors that selectively block the catalytic ß5 subunit of the immunoproteasome by inducing only marginal cytotoxic effects. Structural and mass spectrometric analyses revealed a novel reaction mechanism involving polarity inversion and irreversible crosslinking of the proteasomal active site. We thus identified the sulfonyl fluoride headgroup for the development and optimization of immunoproteasome selective compounds and their possible application in autoimmune disorders.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Drug Design , Ligands
13.
Trends Cell Biol ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38431493

ABSTRACT

Alternative mRNA splicing enables the diversification of the proteome from a static genome and confers plasticity and adaptiveness on cells. Although this is often explored in development, where hard-wired programs drive the differentiation and specialization, alternative mRNA splicing also offers a way for cells to react to sudden changes in outside stimuli such as small-molecule metabolites. Fluctuations in metabolite levels and availability in particular convey crucial information to which cells react and adapt. We summarize and highlight findings surrounding the metabolic regulation of mRNA splicing. We discuss the principles underlying the biochemistry and biophysical properties of mRNA splicing, and propose how these could intersect with metabolite levels. Further, we present examples in which metabolites directly influence RNA-binding proteins and splicing factors. We also discuss the interplay between alternative mRNA splicing and metabolite-responsive signaling pathways. We hope to inspire future research to obtain a holistic picture of alternative mRNA splicing in response to metabolic cues.

14.
Wiley Interdiscip Rev RNA ; 14(5): e1789, 2023.
Article in English | MEDLINE | ID: mdl-37042417

ABSTRACT

Aminoacyl-tRNA synthetases form the protein family that controls the interpretation of the genetic code, with tRNA aminoacylation being the key chemical step during which an amino acid is assigned to a corresponding sequence of nucleic acids. In consequence, aminoacyl-tRNA synthetases have been studied in their physiological context, in disease states, and as tools for synthetic biology to enable the expansion of the genetic code. Here, we review the fundamentals of aminoacyl-tRNA synthetase biology and classification, with a focus on mammalian cytoplasmic enzymes. We compile evidence that the localization of aminoacyl-tRNA synthetases can be critical in health and disease. In addition, we discuss evidence from synthetic biology which made use of the importance of subcellular localization for efficient manipulation of the protein synthesis machinery. This article is categorized under: RNA Processing Translation > Translation Regulation RNA Processing > tRNA Processing RNA Export and Localization > RNA Localization.


Subject(s)
Amino Acyl-tRNA Synthetases , Transfer RNA Aminoacylation , Animals , RNA, Transfer/genetics , Genetic Code , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Mammals/genetics , Mammals/metabolism
15.
Cell Rep ; 42(6): 112632, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37314928

ABSTRACT

Various stress conditions are signaled through phosphorylation of translation initiation factor eukaryotic initiation factor 2α (eIF2α) to inhibit global translation while selectively activating transcription factor ATF4 to aid cell survival and recovery. However, this integrated stress response is acute and cannot resolve lasting stress. Here, we report that tyrosyl-tRNA synthetase (TyrRS), a member of the aminoacyl-tRNA synthetase family that responds to diverse stress conditions through cytosol-nucleus translocation to activate stress-response genes, also inhibits global translation. However, it occurs at a later stage than eIF2α/ATF4 and mammalian target of rapamycin (mTOR) responses. Excluding TyrRS from the nucleus over-activates translation and increases apoptosis in cells under prolonged oxidative stress. Nuclear TyrRS transcriptionally represses translation genes by recruiting TRIM28 and/or NuRD complex. We propose that TyrRS, possibly along with other family members, can sense a variety of stress signals through intrinsic properties of this enzyme and strategically located nuclear localization signal and integrate them by nucleus translocation to effect protective responses against chronic stress.


Subject(s)
Tyrosine-tRNA Ligase , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism , Protein Transport , Phosphorylation , Nuclear Localization Signals , Oxidative Stress
16.
Nat Cell Biol ; 25(4): 592-603, 2023 04.
Article in English | MEDLINE | ID: mdl-37059883

ABSTRACT

Cells respond to perturbations such as inflammation by sensing changes in metabolite levels. Especially prominent is arginine, which has known connections to the inflammatory response. Aminoacyl-tRNA synthetases, enzymes that catalyse the first step of protein synthesis, can also mediate cell signalling. Here we show that depletion of arginine during inflammation decreased levels of nuclear-localized arginyl-tRNA synthetase (ArgRS). Surprisingly, we found that nuclear ArgRS interacts and co-localizes with serine/arginine repetitive matrix protein 2 (SRRM2), a spliceosomal and nuclear speckle protein, and that decreased levels of nuclear ArgRS correlated with changes in condensate-like nuclear trafficking of SRRM2 and splice-site usage in certain genes. These splice-site usage changes cumulated in the synthesis of different protein isoforms that altered cellular metabolism and peptide presentation to immune cells. Our findings uncover a mechanism whereby an aminoacyl-tRNA synthetase cognate to a key amino acid that is metabolically controlled during inflammation modulates the splicing machinery.


Subject(s)
Amino Acyl-tRNA Synthetases , Arginine-tRNA Ligase , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Arginine/chemistry , Arginine/genetics , Arginine/metabolism , Arginine-tRNA Ligase/chemistry , Arginine-tRNA Ligase/genetics , Arginine-tRNA Ligase/metabolism , RNA Splicing , RNA-Binding Proteins/metabolism
17.
Sci Transl Med ; 15(686): eadc9249, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36888694

ABSTRACT

Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/chemistry , Isoleucine-tRNA Ligase/metabolism , Plasmodium falciparum/metabolism , Malaria, Falciparum/parasitology , Malaria/drug therapy , Drug Resistance
18.
Front Physiol ; 12: 818297, 2021.
Article in English | MEDLINE | ID: mdl-35153822

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in translation by linking amino acids onto their cognate tRNAs during protein synthesis. During evolution, aaRSs develop numerous non-canonical functions that expand the roles of aaRSs in eukaryotic organisms. Although aaRSs have been implicated in viral infection, the function of aaRSs during infections with coronaviruses (CoVs) remains unclear. Here, we analyzed the data from transcriptomic and proteomic database on human cytoplasmic (cyto) and mitochondrial (mt) aaRSs across infections with three highly pathogenic human CoVs, with a particular focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We found an overall downregulation of aaRSs at mRNA levels, while the protein levels of some mt-aaRSs and the phosphorylation of certain aaRSs were increased in response to SARS-CoV-2 infection. Strikingly, interaction network between SARS-CoV-2 and human aaRSs displayed a strong involvement of mt-aaRSs. Further co-immunoprecipitation (co-IP) experiments confirmed the physical interaction between SARS-CoV-2 M protein and TARS2. In addition, we identified the intermediate nodes and potential pathways involved in SARS-CoV-2 infection. This study provides an unbiased, overarching perspective on the correlation between aaRSs and SARS-CoV-2. More importantly, this work identifies TARS2, HARS2, and EARS2 as potential key factors involved in COVID-19.

19.
J Pept Sci ; 16(10): 589-95, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20632254

ABSTRACT

Aequorea victoria green fluorescent protein and its widely used mutants enhanced green fluorescent protein and enhanced cyan fluorescent protein (ECFP) are ideal target proteins to study protein folding. The spectral signals of their chromophores are directly correlated with the folding status of the surrounding protein matrix. Previous studies revealed that tryptophan at position 57 (Trp57) plays a crucial role for the green fluorescent protein's structural and functional integrity. To precisely dissect its role in ECFP folding, we performed its substitution with the isosteric analogs 4-azatryptophan [(4-Aza)Trp] and 7-azatryptophan [(7-Aza)Trp]. Although Trp is moderately hydrophobic, these isosteric analogs are hydrophilic, which makes them an almost ideal tool to study the role of Trp57 in ECFP folding. We achieved high-level expression of both (4-Aza)Trp-ECFP and (7-Aza)Trp-ECFP. However, great portions (70-90%) of protein samples were insoluble and did not contain a maturated chromophore. All attempts to refold the insoluble protein fractions failed. Nevertheless, low amounts of fully labeled, soluble, chromophore containing fractions with altered spectral features were also isolated and identified. The most probable reason for the high yield of misfolding is the introduction of strong hydrophilicity at position 57 which strongly interferes with productive and efficient folding of ECFP. In addition, the results support a strong correlation between translational kinetics of non-canonical amino acids in the ribosome and in vivo folding of the related modified protein sequence.


Subject(s)
Green Fluorescent Proteins/chemistry , Hydrophobic and Hydrophilic Interactions , Protein Folding , Tryptophan/analogs & derivatives , Animals , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Models, Molecular , Protein Structure, Tertiary , Tryptophan/chemistry
20.
Genes (Basel) ; 11(11)2020 11 22.
Article in English | MEDLINE | ID: mdl-33266490

ABSTRACT

Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in the mRNA translation machinery, yet they possess numerous non-canonical functions developed during the evolution of complex organisms. The aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are continually being implicated in tumorigenesis, but these connections are often limited in scope, focusing on specific aaRSs in distinct cancer subtypes. Here, we analyze publicly available genomic and transcriptomic data on human cytoplasmic and mitochondrial aaRSs across many cancer types. As high-throughput technologies have improved exponentially, large-scale projects have systematically quantified genetic alteration and expression from thousands of cancer patient samples. One such project is the Cancer Genome Atlas (TCGA), which processed over 20,000 primary cancer and matched normal samples from 33 cancer types. The wealth of knowledge provided from this undertaking has streamlined the identification of cancer drivers and suppressors. We examined aaRS expression data produced by the TCGA project and combined this with patient survival data to recognize trends in aaRSs' impact on cancer both molecularly and prognostically. We further compared these trends to an established tumor suppressor and a proto-oncogene. We observed apparent upregulation of many tRNA synthetase genes with aggressive cancer types, yet, at the individual gene level, some aaRSs resemble a tumor suppressor while others show similarities to an oncogene. This study provides an unbiased, overarching perspective on the relationship of aaRSs with cancers and identifies certain aaRS family members as promising therapeutic targets or potential leads for developing biological therapy for cancer.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Mutation , Neoplasms/enzymology , Neoplasms/mortality , Amino Acyl-tRNA Synthetases/metabolism , Databases, Protein , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genetic Variation , Humans , Neoplasms/genetics , Proteomics/methods , Proto-Oncogene Mas , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL