Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nature ; 578(7793): E10, 2020 02.
Article in English | MEDLINE | ID: mdl-31937918

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 575(7781): 164-168, 2019 11.
Article in English | MEDLINE | ID: mdl-31695212

ABSTRACT

Shape-morphing systems, which can perform complex tasks through morphological transformations, are of great interest for future applications in minimally invasive medicine1,2, soft robotics3-6, active metamaterials7 and smart surfaces8. With current fabrication methods, shape-morphing configurations have been embedded into structural design by, for example, spatial distribution of heterogeneous materials9-14, which cannot be altered once fabricated. The systems are therefore restricted to a single type of transformation that is predetermined by their geometry. Here we develop a strategy to encode multiple shape-morphing instructions into a micromachine by programming the magnetic configurations of arrays of single-domain nanomagnets on connected panels. This programming is achieved by applying a specific sequence of magnetic fields to nanomagnets with suitably tailored switching fields, and results in specific shape transformations of the customized micromachines under an applied magnetic field. Using this concept, we have built an assembly of modular units that can be programmed to morph into letters of the alphabet, and we have constructed a microscale 'bird' capable of complex behaviours, including 'flapping', 'hovering', 'turning' and 'side-slipping'. This establishes a route for the creation of future intelligent microsystems that are reconfigurable and reprogrammable in situ, and that can therefore adapt to complex situations.

3.
Nat Mater ; 16(11): 1106-1111, 2017 11.
Article in English | MEDLINE | ID: mdl-29058727

ABSTRACT

Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice can lead to specific collective behaviour, including emergent magnetic monopoles, charge screening and transport, as well as magnonic response. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells.

4.
Nanotechnology ; 29(26): 265205, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-29620015

ABSTRACT

Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.

5.
Nanotechnology ; 28(8): 08LT01, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28054511

ABSTRACT

Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel 'peanut' and 'cat-eye' shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.

6.
Nat Commun ; 15(1): 3066, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594254

ABSTRACT

Releasing pre-strained two-dimensional nanomembranes to assemble on-chip three-dimensional devices is crucial for upcoming advanced electronic and optoelectronic applications. However, the release process is affected by many unclear factors, hindering the transition from laboratory to industrial applications. Here, we propose a quasistatic multilevel finite element modeling to assemble three-dimensional structures from two-dimensional nanomembranes and offer verification results by various bilayer nanomembranes. Take Si/Cr nanomembrane as an example, we confirm that the three-dimensional structural formation is governed by both the minimum energy state and the geometric constraints imposed by the edges of the sacrificial layer. Large-scale, high-yield fabrication of three-dimensional structures is achieved, and two distinct three-dimensional structures are assembled from the same precursor. Six types of three-dimensional Si/Cr photodetectors are then prepared to resolve the incident angle of light with a deep neural network model, opening up possibilities for the design and manufacturing methods of More-than-Moore-era devices.

7.
Nanoscale ; 15(44): 17727-17738, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37881900

ABSTRACT

The emergence of "nanomotors", "nanomachines", and "nanorobotics" has transformed dynamic nanoparticle research, driving a transition from passive to active and intelligent nanoscale systems. This review examines two critical fields: the investigation of airborne particles, significant contributors to air pollution, and the rapidly emerging domain of catalytic and field-controlled nano- and micromotors. We examine the basic concepts of nano- and micromachines in motion and envision their possible use in a gaseous medium to trap and neutralize hazardous particulates. While past studies described the application of nanotechnology and nanomotors in various scenarios, airborne nano/micromachine motion and their control have yet to be thoroughly explored. This review intends to promote multidisciplinary research on nanomachines' propulsion and task-oriented applications, highlighting their relevance in obtaining a cleaner atmospheric environment, a critical component to consider for human health.


Subject(s)
Nanoparticles , Nanotechnology , Humans , Motion , Catalysis
8.
Sci Adv ; 9(42): eadi7805, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37851806

ABSTRACT

Uncooled infrared detection based on vanadium dioxide (VO2) radiometer is highly demanded in temperature monitoring and security protection. The key to its breakthrough is to fabricate bolometer arrays with great absorbance and excellent thermal insulation using a straightforward procedure. Here, we show a tubular bolometer by one-step rolling VO2 nanomembranes with enhanced infrared detection. The tubular geometry enhances the thermal insulation, light absorption, and temperature sensitivity of freestanding VO2 nanomembranes. This tubular VO2 bolometer exhibits a detectivity of ~2 × 108 cm Hz1/2 W-1 in the ultrabroad infrared spectrum, a response time of ~2.0 ms, and a calculated noise-equivalent temperature difference of 64.5 mK. Furthermore, our device presents a workable structural paradigm for polarization-sensitive and omnidirectional light coupling bolometers. The demonstrated overall characteristics suggest that tubular bolometers have the potential to narrow performance and cost gap between photon detectors and thermal detectors with low cost and broad applications.

9.
Adv Mater ; 35(52): e2306715, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37721970

ABSTRACT

Freestanding single-crystalline nanomembranes and their assembly have broad application potential in photodetectors for integrated chips. However, the release and self-assembly process of single-crystalline semiconductor nanomembranes still remains a great challenge in on-chip processing and functional integration, and photodetectors based on nanomembrane always suffer from limited absorption of nanoscale thickness. Here, a non-destructive releasing and rolling process is employed to prepare tubular photodetectors based on freestanding single-crystalline Si nanomembranes. Spontaneous release and self-assembly are achieved by residual strain introduced by lattice mismatch at the epitaxial interface of Si and Ge, and the intrinsic stress and strain distributions in self-rolled-up Si nanomembranes are analyzed experimentally and computationally. The advantages of light trapping and wide-angle optical coupling are realized by tubular geometry. This Si microtube device achieves reliable Ohmic contact and exhibits a photoresponsivity of over 330 mA W-1 , a response time of 370 µs, and a light incident detection angle range of over 120°. Furthermore, the microtubular structure shows a distinct polarization angle-dependent light absorption, with a dichroic ratio of 1.24 achieved at 940 nm. The proposed Si-based microtubes provide new possibilities for the construction of multifunctional chips for integrated circuit ecosystems in the More than Moore era.

10.
Research (Wash D C) ; 2022: 9842752, 2022.
Article in English | MEDLINE | ID: mdl-35928304

ABSTRACT

Practical implementation of minimally invasive biomedical applications has been a long-sought goal for microrobots. In this field, most previous studies only demonstrate microrobots with locomotion ability or performing a single task, unable to be functionalized effectively. Here, we propose a biocompatible shape memory alloy helical microrobot with regulative structure transformation, making it possible to adjust its motion behavior and mechanical properties precisely. Especially, towards vascular occlusion problem, these microrobots reveal a fundamental solution strategy in the mechanical capability using shape memory effect. Such shape-transformable microrobots can not only manipulate thrust and torque by structure to enhance the unclogging efficiency as a microdriller but also utilize the high work energy to apply the expandable helical tail as a self-propulsive stent. The strategy takes advantage of untethered manipulation to operate microsurgery without unnecessary damage. This study opens a route to functionalize microrobots via accurate tuning in structures, motions, and mechanical properties.

11.
J Phys Condens Matter ; 35(9)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36560918

ABSTRACT

Nanophotonics and optoelectronics are the keys to the information transmission technology field. The performance of the devices crucially depends on the light-matter interaction, and it is found that three-dimensional (3D) structures may be associated with strong light field regulation for advantageous application. Recently, 3D assembly of flexible nanomembranes has attracted increasing attention in optical field, and novel optoelectronic device applications have been demonstrated with fantastic 3D design. In this review, we first introduce the fabrication of various materials in the form of nanomembranes. On the basis of the deformability of nanomembranes, 3D structures can be built by patterning and release steps. Specifically, assembly methods to build 3D nanomembrane are summarized as rolling, folding, buckling and pick-place methods. Incorporating functional materials and constructing fine structures are two important development directions in 3D nanophotonics and optoelectronics, and we settle previous researches on these two aspects. The extraordinary performance and applicability of 3D devices show the potential of nanomembrane assembly for future optoelectronic applications in multiple areas.

12.
Nat Commun ; 13(1): 7819, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36535951

ABSTRACT

Thermochromic window develops as a competitive solution for carbon emissions due to comprehensive advantages of its passivity and effective utilization of energy. How to further enhance the solar modulation ([Formula: see text]) of thermochromic windows while ensuring high luminous transmittance ([Formula: see text]) becomes the latest challenge to touch the limit of energy efficiency. Here, we show a smart window combining mechanochromism with thermochromism by self-rolling of vanadium dioxide (VO2) nanomembranes to enhance multi-level solar modulation. The mechanochromism is introduced by the temperature-controlled regulation of curvature of rolled-up smart window, which benefits from effective strain adjustment in VO2 nanomembranes upon the phase transition. Under geometry design and optimization, the rolled-up smart window with high [Formula: see text] and [Formula: see text] is achieved for the modulation of indoor temperature self-adapted to seasons and climate. Furthermore, such rolled-up smart window enables high infrared reflectance after triggered phase transition and acts as a smart lens protective cover for strong radiation. This work supports the feasibility of self-rolling technology in smart windows and lens protection, which promises broad interest and practical applications of self-adapting devices and systems for smart building, intelligent sensors and actuators with the perspective of energy efficiency.

13.
ACS Appl Mater Interfaces ; 13(25): 30106-30117, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34143593

ABSTRACT

Micromotors require stable and precise motion control for complex tasks such as microsurgery, drug delivery in vivo, or environmental monitoring ex vivo. However, a continuous control signal is needed for micromotors to achieve motion control during their whole journey, which hinders their application in areas where external control stimuli are limited or unavailable. Fortunately, nature suggests an excellent solution that flying squirrel exhibits motion tuning capability by deforming itself when jumping off a tall tree. Inspired by this, we propose a Pt-PAzoMA Janus micromotor that precisely changes its shape (from a spherical shape to an elliptical shape) under a brief light signal (450 nm) and maintains this deformation until next signal reception. The deformed elliptical micromotor performs relatively low-speed motion compared to the spherical one, which is further confirmed by massive simulation results. In addition, by investigating motion behavior experimentally and theoretically, it is proved that the motion modulation is caused by the drag force changing brought from the deformation. This method represents a different route to regulate the motion of micromotors without a continuous signal, which is useful in application scenarios where the environmental control signal is inaccessible/limited or long-time operation with minimum energy input is required to maintain motion manipulation. With further function modification, this kind of shape-changing micromotor has potential in optimizing drug diffusion efficiency by speed altering and long-term monitoring at the diseased area by confining the active range of the micromotor in the targeted area through deformation.

14.
Micromachines (Basel) ; 12(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34683302

ABSTRACT

Gaseous oxygen plays a vital role in driving the metabolism of living organisms and has multiple agricultural, medical, and technological applications. Different methods have been discovered to produce oxygen, including plants, oxygen concentrators and catalytic reactions. However, many such approaches are relatively expensive, involve challenges, complexities in post-production processes or generate undesired reaction products. Catalytic oxygen generation using hydrogen peroxide is one of the simplest and cleanest methods to produce oxygen in the required quantities. Chemically powered micro/nanomotors, capable of self-propulsion in liquid media, offer convenient and economic platforms for on-the-fly generation of gaseous oxygen on demand. Micromotors have opened up opportunities for controlled oxygen generation and transport under complex conditions, critical medical diagnostics and therapy. Mobile oxygen micro-carriers help better understand the energy transduction efficiencies of micro/nanoscopic active matter by careful selection of catalytic materials, fuel compositions and concentrations, catalyst surface curvatures and catalytic particle size, which opens avenues for controllable oxygen release on the level of a single catalytic microreactor. This review discusses various micro/nanomotor systems capable of functioning as mobile oxygen generators while highlighting their features, efficiencies and application potentials in different fields.

15.
ACS Appl Mater Interfaces ; 13(48): 58104-58113, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34809420

ABSTRACT

Carbon dioxide (CO2) sensing using an optical technique is of great importance in the environment and industrial emission monitoring. However, limited by the poor specific adsorption of gas molecules as well as insufficient coupling efficiency, there is still a long way to go toward realizing a highly sensitive optical CO2 gas sensor. Herein, by combining the advantages of a whispering-gallery-mode microcavity and a metal-organic framework (MOF) film, a porous functional microcavity (PF-MC) was fabricated with the assistance of the atomic layer deposition technique and was applied to CO2 sensing. In this functional composite, the rolled-up microcavity provides the ability to tune the propagation of light waves and the electromagnetic coupling with the surroundings via an evanescent field, while the nanoporous MOF film contributes to the specific adsorption of CO2. The composite demonstrates a high sensitivity of 188 nm RIU-1 (7.4 pm/% with respect to the CO2 concentration) and a low detection limit of ∼5.85 × 10-5 RIU. Furthermore, the PF-MC exhibits great selectivity to CO2 and outstanding reproducibility, which is promising for the next-generation optical gas sensing devices.

16.
ACS Nano ; 13(12): 13910-13916, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31820931

ABSTRACT

Artificial spin ices are a class of metamaterials consisting of magnetostatically coupled nanomagnets. Their interactions give rise to emergent behavior, which has the potential to be harnessed for the creation of functional materials. Consequently, the ability to map the stray field of such systems can be decisive for gaining an understanding of their properties. Here, we use a scanning nanometer-scale superconducting quantum interference device (SQUID) to image the magnetic stray field distribution of an artificial spin ice system exhibiting structural chirality as a function of applied magnetic fields at 4.2 K. The images reveal that the magnetostatic interaction gives rise to a measurable bending of the magnetization at the edges of the nanomagnets. Micromagnetic simulations predict that, owing to the structural chirality of the system, this edge bending is asymmetric in the presence of an external field and gives rise to a preferred direction for the reversal of the magnetization. This effect is not captured by models assuming a uniform magnetization. Our technique thus provides a promising means for understanding the collective response of artificial spin ices and their interactions.

17.
Adv Mater ; 31(29): e1900561, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31161627

ABSTRACT

With a specific stimulus, shape-memory materials can assume a temporary shape and subsequently recover their original shape, a functionality that renders them relevant for applications in fields such as biomedicine, aerospace, and wearable electronics. Shape-memory in polymers and composites is usually achieved by exploiting a thermal transition to program a temporary shape and subsequently recover the original shape. This may be problematic for heat-sensitive environments, and when rapid and uniform heating is required. In this work, a soft magnetic shape-memory composite is produced by encasing liquid droplets of magneto-rheological fluid into a poly(dimethylsiloxane) matrix. Under the influence of a magnetic field, this material undergoes an exceptional stiffening transition, with an almost 30-fold increase in shear modulus. Exploiting this transition, fast and fully reversible magnetic shape-memory is demonstrated in three ways, by embossing, by simple shear, and by unconstrained 3D deformation. Using advanced synchrotron X-ray tomography techniques, the internal structure of the material is revealed, which can be correlated with the composite stiffening and shape-memory mechanism. This material concept, based on a simple emulsion process, can be extended to different fluids and elastomers, and can be manufactured with a wide range of methods.

18.
Science ; 363(6434): 1435-1439, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30923219

ABSTRACT

Magnetically coupled nanomagnets have multiple applications in nonvolatile memories, logic gates, and sensors. The most effective couplings have been found to occur between the magnetic layers in a vertical stack. We achieved strong coupling of laterally adjacent nanomagnets using the interfacial Dzyaloshinskii-Moriya interaction. This coupling is mediated by chiral domain walls between out-of-plane and in-plane magnetic regions and dominates the behavior of nanomagnets below a critical size. We used this concept to realize lateral exchange bias, field-free current-induced switching between multistate magnetic configurations as well as synthetic antiferromagnets, skyrmions, and artificial spin ices covering a broad range of length scales and topologies. Our work provides a platform to design arrays of correlated nanomagnets and to achieve all-electric control of planar logic gates and memory devices.

SELECTION OF CITATIONS
SEARCH DETAIL