Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Small ; : e2402009, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856034

ABSTRACT

Hybrid nanogenerators (HNGs) represent a promising avenue for water energy harvesting, yet their commercial viability faces hurdles such as limited power output, poor coupling, and constrained operational lifespans. Here, a highly coupled triboelectric-electromagnetic magnetic-levitation hybrid nanogenerator (ML-HNG) is introduced that shows great potential for water energy harvesting. The ML-HNG fulfills the challenges of high power output, strong coupling, and long operational lifespans. During the contact-separation process of the triboelectric nanogenerator (TENG), the changing magnetic flux in the electromagnetic generator's coils generates a potential difference between the coils and Cu electrodes. The unique design of the ML-HNG employs a shared coil electrode configuration, which enhances the coupling without adding extra volume. This integration allows the ML-HNG to achieve multi-frequency vibrations and multiple output cycles per external longitudinal movement, a phenomenon known as the frequency multiplication effect. With an average power density of 1.69 W m-3 in water, the ML-HNG provides continuous power for a thermo-hygrometer and can quickly drive a wireless water level alarm system within a minute. This groundbreaking hybrid nanogenerator design holds significant promise for the efficient and consistent harvesting of low-frequency ocean wave energy, marking a substantial advancement in blue energy technology.

2.
Biomed Chromatogr ; 38(4): e5826, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38205667

ABSTRACT

Artemisia argyi H.Lév. & Vaniot essential oil (AAEO) has shown pharmacological effects such as anti-inflammation, antioxidant, and anti-tumor properties. However, the protective effect of AAEO on lipopolysaccharide (LPS)-induced liver injury and its potential protective mechanism are still unclear. In this study, we used ultra-performance liquid chromatography tandem mass spectrometry metabolomics techniques to investigate the changes in liver tissue metabolites in mice exposed to LPS with or without AAEO treatment for 14 days. The biochemical results showed that compared with the control group, AAEO significantly reduced the levels of liver functional enzymes, suggesting a significant improvement in liver injury. In addition, the 18 differential metabolites identified by metabolomics were mainly involved in the reprogramming of arachidonic acid metabolism, tryptophan metabolism, and purine metabolism. AAEO could significantly inhibit the expression of COX-2, IDO1, and NF-κB; enhance the body's anti-inflammatory ability; and alleviate liver injury. In summary, our study identified the protective mechanism of AAEO on LPS-induced liver injury at the level of small molecular metabolites, providing a potential liver protective agent for the treatment of LPS-induced liver injury.


Subject(s)
Artemisia , Chemical and Drug Induced Liver Injury, Chronic , Oils, Volatile , Mice , Animals , Artemisia/chemistry , Oils, Volatile/pharmacology , Lipopolysaccharides/adverse effects , Tandem Mass Spectrometry , Liquid Chromatography-Mass Spectrometry , Metabolomics
3.
Sensors (Basel) ; 24(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931554

ABSTRACT

To achieve large-scale development of triboelectric nanogenerators (TENGs) for water wave energy harvesting and powering the colossal sensors widely distributed in the ocean, facile and scalable TENGs with high output are urgently required. Here, an elastic self-recovering hybrid nanogenerator (ES-HNG) is proposed for water wave energy harvesting and marine environmental monitoring. The elastic skeletal support of the ES-HNG is manufactured using three-dimensional (3D) printing technology, which is more conducive to the large-scale integration of the ES-HNG. Moreover, the combination of a TENG and an electromagnetic generator (EMG) optimizes the utilization of device space, leading to enhanced energy harvesting efficiency. Experimental results demonstrate that the TENG achieves a peak power output of 42.68 mW, and the EMG reaches a peak power output of 4.40 mW. Furthermore, various marine environment monitoring sensors, such as a self-powered wireless meteorological monitoring system, a wireless alarm system, and a water quality monitoring pen, have been successfully powered by the sophisticated ES-HNG. This work introduces an ES-HNG for water wave energy harvesting, which demonstrates potential in marine environment monitoring and offers a new solution for the sustainable development of the marine internet of things.

4.
Environ Toxicol ; 38(10): 2416-2428, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37347548

ABSTRACT

The environmental pollutant bisphenol A (BPA), used in the manufacture of plastic packaging materials for various diets, is widely distributed in the environment and causes severe hepatotoxicity by inducing oxidative stress. Artemisia argyi essential oil (AAEO), a volatile oil component isolated from Artemisia argyi H.Lév. & Vaniot, has pharmacological effects, especially for hepatoprotective actions. However, the potential effect of AAEO in BPA induced hepatotoxicity has not been characterized. First, we analyzed the chemical composition in AAEO by gas chromatography-mass spectrometry. Herein, we investigated the effect of AAEO on hepatic metabolic changes in mice exposed to BPA. Results showed that compared with the BPA group, AAEO could reduce the level of liver function enzymes in BPA mice serum, and ameliorate hepatic lesions and fibrosis. Additionally, 20 differential metabolites screened by metabolomics were mainly involved in the reprogramming of glutathione metabolism, purine metabolism, and polyunsaturated fatty acid synthesis. Moreover, AAEO could reduce hepatic ferroptosis induced by BPA, as demonstrated by reducing xanthine oxidase activity, up-regulating the activities of glutathione peroxidase 4 (GPX4), superoxide dismutase, and catalase and the expression of SLC7A11 to promote the glutathione synthetic, while inhibiting transferrin receptor 1 (TFR1) expression to reduce the accumulation of Fe2+ in cells. Therefore, our study identified AAEO as a hepatic protectant against BPA-induced hepatotoxicity by reversing the occurrence of ferroptosis.


Subject(s)
Artemisia , Chemical and Drug Induced Liver Injury , Ferroptosis , Oils, Volatile , Mice , Animals , Artemisia/chemistry , Oils, Volatile/pharmacology , Glutathione , Chemical and Drug Induced Liver Injury/prevention & control
5.
Medicine (Baltimore) ; 103(29): e39014, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39029023

ABSTRACT

Coronary spastic angina (CSA) is common, and treatment options for refractory vasospastic angina are sometimes limited. Guizhifuling pills (GFP) have demonstrated efficacy in reducing CSA episodes, but their pharmacological mechanism remains unclear. To explore the mechanism of action of GFP in preventing and treating CSA, we employed network pharmacology and molecular docking to predict targets and analyze networks. We searched GFP chemical composition information and related targets from databases. The drug-target and drug-target pathway networks were constructed using Cytoscape. Then the protein-protein interaction was analyzed using the STRING database. Gene Ontology biological functions and Kyoto Encyclopedia of Genes and Genomes pathways were performed by the Metascape database, and molecular docking validation of vital active ingredients and action targets of GFP was performed using AutoDock Vina software. The 51 active components in GFP are expected to influence CSA by controlling 279 target genes and 151 signaling pathways. Among them, 6 core components, such as quercetin, ß-sitosterol, and baicalein, may regulate CSA by affecting 10 key target genes such as STAT3, IL-6, TP53, AKT1, and EGFR. In addition, they are involved in various critical signaling pathways such as apelin, calcium, advanced glycation end product-receptor for advanced glycation end product, and necroptosis. Molecular docking analysis confirms favorable binding interactions between the active components of GFP and the selected target proteins. The effects of GFP in treating CSA involve multiple components, targets, and pathways, offering a theoretical basis for its clinical use and enhancing our understanding of how it works.


Subject(s)
Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Humans , Network Pharmacology/methods , Coronary Vasospasm/drug therapy , Coronary Vasospasm/metabolism , Signal Transduction/drug effects , Protein Interaction Maps , Sitosterols/therapeutic use , Sitosterols/pharmacology
6.
ACS Appl Mater Interfaces ; 16(34): 44780-44790, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39143922

ABSTRACT

The state-of-the-art triboelectric nanogenerator (TENG) technology has numerous advantages and creates new prospects for the rapid development of the Internet of Things (IoT) in marine environments. Here, to accelerate the application process of TENG, an elaborately designed multilayered sleeve-structured hybrid nanogenerator (M-HNG) is developed to efficiently and persistently harvest marine energy. The M-HNG integrates an electromagnetic nanogenerator (EMG) with four coils and a multilayered sleeve-structured TENG (MS-TENG) with three freestanding layer units to increase spatial utilization efficiency. Moreover, rabbit fur strips are introduced to enhance the output performance and strengthen the durability of TENG. Therefore, the MS-TENG has high durability due to its soft-contact structure, maintaining its performance even after 240,000 cycles. When a 1000 µF capacitor is charged by M-HNG utilizing a power management circuit (PMC), the stored energy is increased from 2.62 mJ to 140.11 mJ, representing a significant improvement of 52-fold. The M-HNG triggered by water waves has successfully powered various small electronic devices, including 1200 LED lights, nine thermo-hygrometers, a water quality testing pen, and water level alarms. The proposed M-HNG effectively harvests low-frequency water wave energy, introducing an innovative concept for constructing a hybrid TENG with enhanced density and durability.

7.
Fitoterapia ; 168: 105522, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37169131

ABSTRACT

Artemisia argyi H.Lév. & Vaniot, a traditional Chinese medicine with a history spanning over two millennia, has been extensively used in folk medicine to treat dysmenorrhea, uterine bleeding and inflammation. Recent studies have demonstrated that the essential oil extracted from Artemisia argyi H.Lév. & Vaniot, known as AAEO, exhibits significant anti-tumor properties against liver and lung cancers. There is a scarcity of research on the potential impact of AAEO on pancreatic cancer (PC) cells. In this study, UPLC-MS/MS-based metabolomics method was established to evaluate the effect of AAEO on the proliferation of PC cells. The differential compounds included 5-oxoproline, glutamate, γ-glutamylcysteine, glutathione, arachidonic acid, adrenal acid and linoleic acid were detected by metabolomics, enriching in the γ-glutamyl cycle and polyunsaturated fatty acid metabolism, which were closely related to ferroptosis. Meanwhile, AAEO dramatically increased the levels of intracellular iron ion via up-regulation of TFR1, augmented reactive oxygen species and malondialdehyde in a dose-dependent manner by down-regulation of γ-glutamyl cycle through decreasing expressions of SLC7A11. Additionally, ß-caryophyllene oxide, one of the main components of AAEO, could covalently bind to Cys in SW1990 cells to form a conjugate Cpo-Cys, resulting in the inhibition of glutathione synthesis. Importantly, the ferroptosis inhibitor deferoxamine significantly blocked the inhibitory effect of AAEO on SW1990 cells. Meanwhile, ß-caryophyllene oxide, dihydro-ß-ionone and α-bisabolol had strong binding force with GPX4, SLC7A11 and TFR1, respectively. These findings showed that AAEO induced ferroptosis via regulation of γ-glutamyl cycle by SLC7A11 and iron disorders by TFR1. Our study discovered AAEO as a potential therapeutic approach to induce ferroptosis to prevent or treat PC.


Subject(s)
Artemisia , Ferroptosis , Oils, Volatile , Pancreatic Neoplasms , Humans , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Artemisia/chemistry , Up-Regulation , Chromatography, Liquid , Tandem Mass Spectrometry , Molecular Structure , Pancreatic Neoplasms/drug therapy
8.
J Burn Care Res ; 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36402740

ABSTRACT

This work aims to elucidate the molecular mechanism of Qi Wei anti-burn Tincture (QW) on wound healing in burnt mice using metabolomics and molecular biology techniques. A scald model was first established in Kunming mice. After treatment, biochemical indicators for liver function and burnt skin tissues were then evaluated via biochemical detection and HE staining respectively. Liver tissues were further analyzed for differential metabolites, inflammatory factors, and mRNA levels of cytokines using metabolomics and molecular biology techniques. Involved metabolic pathways were also identified using software. Qi Wei anti-burn Tincture treatment did promote the healing of the burn wounds on Kunming mice with a downregulation of ALP, ALT, AST to normal levels. In mouse liver tissue, the contents of glutamine, aspartic acid, succinic acid and citrulline were significantly reduced, while the contents of 5-hydroxyproline, taurine, hypotaurine and glutamic acid significantly increased. These major differential compounds are involved in the arginine metabolic pathway, nitrogen excretion, and the metabolism of taurine and hypotaurine, suggesting that Qi Wei anti-burn Tincture reprogramed the above metabolic processes in the liver. Furthermore, the application of Qi Wei anti-burn Tincture increased the expression of TGF-ß1 and FGF-2, and reduced the levels of TNF-α, IL-1ß, IL-6 and reactive oxygen species in the liver of mice induced by burn injury. This study found that Qi Wei anti-burn Tincture treatment promoted metabolic pathway remodeling in liver, which might be a potential mechanism for Qi Wei anti-burn Tincture to treat burn wounds.

9.
Phytomedicine ; 98: 153943, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35104766

ABSTRACT

BACKGROUND: Pancreatic cancer is one of the most common malignant tumors of the digestive tract. Ponicidin, a tetracyclic diterpenoid active ingredient extracted from the traditional phytomedicine Rubescens, has high safety and great inhibitory effect on the proliferation of a variety of cancer cells, especially malignant tumor cells of the digestive tract. However, the inhibitory effect and mechanism of ponicidin on pancreatic cancer cells is still unclear. Our study aimed to use metabonomics technology to analyze and explore the suppressive effect of ponidicin against pancreatic cancer cells. METHODS: MTT and flow cytometry were conducted to study the potential effect of ponicidin on SW1990 cells. Secondly, UPLC-MS/MS was used to analyze the small molecule metabolites and relevant differential metabolic pathways induced by ponicidin treatment. Furthermore, through the determination of glutathione peroxidase 4 (GPX4) activity and molecular docking simulation experiments, the effects of intracellular GPX4 activity and GSH/GSSG ratio after ponicidin were evaluated. Finally, the determination of the content of iron ions and malondialdehyde in cells, and the experiment of the effect of ferroptosis inhibitors on cell viability, the effect of ponicidin on the induction of ferroptosis in SW1990 cells was also detected. RESULTS: The IC50 of ponicidin on SW1990 cells was 20 µM, which could significantly induce cell apoptosis and arrest the cells in G2/M phase. Metabolomics results showed that the contents of endogenous small molecules such as gamma-glutamylcysteine, 5-oxoproline, glutamic acid, reduced glutathione (GSH), oxidized glutathione (GSSG) and arachidonic acid have changed significantly. Main differential compounds were involved in the gamma-glutamyl cycle and polyunsaturated fatty acid metabolism of pancreatic cancer cell lines. Additionally, ponicidin could covalently bind to GSH in SW1990 cells to form a conjugate Pon-GSH, which further reduced the content of free GSH and GPX4 activity in cells. Notably, ponicidin dose-dependently increased levels of iron ions, malondialdehyde and reactive oxygen species in SW1990 cells, and the ferroptosis inhibitors could significantly block the effects of ponicidin on the proliferation of SW1990 cells. CONCLUSION: Ponicidin could suppress the pancreatic cancer cell proliferation via inducing ferroptosis by inhibiting the gamma-glutamyl cycle and regulating the polyunsaturated fatty acid metabolism in SW1990 cells.

10.
J Chromatogr A ; 1667: 462891, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35217409

ABSTRACT

In this work, a stable isotope labelling-flow injection analysis-tandem mass spectrometry (SIL-FIA-MS/MS) with simultaneous monitoring [M+H]+ and [M+Cl]- method was developed for very specific and high throughput screening of anabolic-androgenic steroids (AAS) illegally added to healthy foods. Initially, a simple centrifugation step was carried out for liquid samples, and for solid samples, a solid-liquid extraction step was conducted. Afterwards, batch chemical derivatization was carried out. After adding a certain amount of 13C6-3-NPH labelled AAS standards as the internal standards, it can be directly transferred for FIA-MS/MS analysis based on the no MS response characteristics of 3-NPH. The 3-NPH labelled AAS showed dual-polarity property, observing chloride adduct ion ([M+Cl]-) in negative ion mode and proton adduct ion ([M+H]+) in positive ion mode. The average time cost for pretreatment of each sample was less than 1 min by carrying out batch processing. The subsequent FIA-MS/MS detection enabled rapid and high throughput detection. The addition of 13C6-3-NPH-labelled AAS as internal standards can correct the matrix effect to achieve accurate quantitative analysis. The detection sensitivity was also improved by 2-5 folds after 3-NPH labelling. The limits of detection (LODs) in positive MRM mode were in ranges of 0.1-0.3 ng/mL. The validated method with simultaneous monitoring [M+H]+ and [M+Cl]- was validated in the range of 6.0-1000 ng/mL with the linear coefficient (R2) greater than 0.997. Satisfactory recoveries were found to be in ranges of 93.0-108.7%. The intra-day and inter-day RSDs were in the range of 3.5-9.9% and 5.1-14.1%, respectively. No changes in detection sensitivity of the mass spectrometry and no carry-over effects were found after numerous consecutive injections of AAS derivates. Compared with previously reported methods, the proposed method proved accurate, very specific, high throughput with good sensitivity.


Subject(s)
Protons , Tandem Mass Spectrometry , Chlorides , Chromatography, High Pressure Liquid , Flow Injection Analysis , Isotope Labeling , Steroids/chemistry
11.
J Pharm Biomed Anal ; 201: 114129, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34000577

ABSTRACT

Doxorubicin (Dox) is commonly used for the treatment of malignant tumors, including colon cancer. However, the development of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) in tumor chemotherapy has seriously reduced the therapeutic efficacy of Dox. Natural product curcumin (Cur) was demonstrated to have a variety of pharmacological effects, such as anti-tumor, anti-oxidation and anti-aging activities. Here, we examined the MDR reversal capability of Cur in drug sensitive-(SW620) and resistant-(SW620/Ad300) colon cancer cells, and elucidated the underlying molecular mechanisms at the metabolic level. It was found that Cur reversed P-gp-mediated resistance in SW620/Ad300 cells by enhancing the Dox-induced cytotoxicity and apoptosis. Further mechanistic studies indicated that Cur inhibited the ATP-dependent transport activity of P-gp, thereby increasing the intra-celluar accumulation of Dox in drug-resistant cells. Metabolomics analysis based on UPLC-MS/MS showed that the MDR phenomenon in SW620/Ad300 cells was closely correlated with the upregulation of spermine and spermidine synthesis and D-glutamine metabolism. Cur significantly inhibited the biosynthesis of spermine and spermidine by decreasing the expression of ornithine decarboxylase (ODC) and suppressed D-glutamine metabolism, which in turn decreased the anti-oxidative stress ability and P-gp transport activity of SW620/Ad300 cells, eventually reversed MDR. These findings indicated the MDR reversal activity and the related mechanism of action of Cur, suggesting that Cur could be a promising MDR reversal agent for cancer treatment.


Subject(s)
Colonic Neoplasms , Curcumin , Cell Line, Tumor , Chromatography, Liquid , Colonic Neoplasms/drug therapy , Curcumin/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Humans , Tandem Mass Spectrometry
12.
Sci Total Environ ; 770: 145301, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33515877

ABSTRACT

Bisphenol A (BPA) is widely used to manufacture packaging materials for various daily necessities and causes harmful effects in organs, especially liver injury, by generating oxidative stress. Oridonin, an active diterpenoid isolated from Rabdosia rubescens (Hemsl.) Hara, has been reported to possess a wide range of pharmacological activities including anti-inflammatory, antioxidative and antiapoptotic effects. However, the role of oridonin in BPA--induced liver injury and its potential protective mechanism have not been well characterized. In this research, we explored the metabolic alterations in the liver tissue of rats after exposure to BPA with or without pretreatment with oridonin for 14 days by metabolomics analysis based on UPLC-MS/MS. Rats were randomly divided into groups as follows: Control, Vehicle, Oridonin (10 mg/kg), Bisphenol A (500 mg/kg), bisphenol A + Oridonin (500 + 10 mg/kg), Bisphenol A + Diammonium glycyrrhizinate (500 + 40 mg/kg). The biochemical results showed that oridonin significantly reduced the levels of AST and ALT (P < 0.05), ameliorated the abnormal histopathological changes and reduced hepatic apoptosis compared with the BPA group. Furthermore, metabolomics results revealed that purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism were reprogrammed, based on 28 identified significant differential metabolites among the Vehicle, BPA and BPA + oridonin groups. In-depth studies demonstrated that pretreatment with oridonin may play a protective role by restoring BPA-induced changes in oxidative stress and the activity of oxidase (XOD) (P < 0.05). Additionally, oridonin could inhibit the activity of XOD by binding to it, therefore decreasing the reactive oxygen species (ROS) level, upregulating the content of hypoxanthine and xanthine, and reducing the level of uric acid in the liver (P < 0.05). This research presents the potential protective mechanisms of oridonin on BPA-induced liver injury at the metabolic level, which might be used to identify new protective agents that prevent BPA-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Animals , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/toxicity , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chromatography, Liquid , Diterpenes, Kaurane , Liver/metabolism , Oxidative Stress , Oxidoreductases/metabolism , Phenols , Rats , Tandem Mass Spectrometry
13.
Sci Total Environ ; 750: 141685, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32862004

ABSTRACT

Human exposure to bisphenol A (BPA) is unavoidable in daily life. Recently, research has showen that BPA could induce oxidative imbalance, thereby causing reproductive toxicity and liver dysfunction. Accumulated evidence has demonstrated that metformin possesses strong anti-oxidative properties. This study aimed to study the mechanism underlying the hepatic-protective effect of metformin on liver injury induced by BPA in rats via the UPLC-MS/MS metabolomics approach. Forty-two male rats were randomly divided into six groups (n = 7), namely the saline group (control), the corn oil group (vehicle), the metformin group (Met), the bisphenol A group (BPA), the bisphenol A and metformin group (BPA + Met), and the bisphenol A and diammonium glycyrrhizinate (positive control) group (BPA + DG). Serum was collected for biochemical analysis and metabolomics, and liver tissue was collected for histopathology and metabolomics in each group. We found that metformin could significantly reduce the levels of liver function enzymes (ALT, AST and GGT) and ameliorate inflammatory cell infiltration and hepatocyte necrosis induced by BPA. On the other hand, metformin could significantly enhance the total antioxidant capacity in BPA rats. Notably, metabolomics data indicated that the principal altered metabolic pathways based on the 26 differential metabolites in liver tissue, and 21 in serum among vehicle, BPA and BPA + Met groups, respectively, including cysteine and methionine metabolism, glutathione metabolism, and arginine biosynthesis and purine metabolism. Additionally, metformin significantly increased cystathionine ß synthase (CBS) and cystathionine γ lyase (CSE), thus reducing serum levels of homocysteine and increasing hepatic levels of cysteine and glutathione in BPA-treated rats. Overall, this study's results provided new insights into the role and mechanism of metformin in BPA-induced liver injury in rats.


Subject(s)
Cystathionine gamma-Lyase , Metformin , Animals , Benzhydryl Compounds/toxicity , Chromatography, Liquid , Cystathionine beta-Synthase/metabolism , Cystathionine gamma-Lyase/metabolism , Humans , Liver/metabolism , Male , Metformin/toxicity , Phenols , Rats , Tandem Mass Spectrometry , Up-Regulation
14.
J Chromatogr A ; 1654: 462474, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34438300

ABSTRACT

The current study presents a convenient, rapid and effective simultaneous extraction/derivatization (SEDP) strategy for effective pretreatment of catecholamines (CAs). Commercial zirconium oxide (ZrO2) nanoparticles were employed for the selective capturing of cis-diol containing CAs to remove the biological interferences and phenyl isothiocyanate (PITC) was used for derivatization to improve the ionization and to improve the chromatographic separation. The extraction and derivatization procedures were integrated into one step to simplify the sample pretreatment. Excessive derivatization reagents were removed as well, reducing the degree of contaminations in mass spectrometry. The factors affecting the SEDP process were optimized and the results showed that the detection sensitivity and chromatographic separation of CAs greatly improved compared with underivatized CAs, during LC-MS/MS analysis. Combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), quantifying the concentration of norepinephrine (NE), epinephrine (E) and dopamine (DA) in biological fluids was validated in ranges of 1-200.0 ng/mL with a satisfactory correlation coefficient (R2 > 0.997). The obtained recoveries were in the range of 91.0-109.5% with RSDs less than 9.4%. Finally, significant changes in CAs levels in urine samples of healthy people and pheochromocytoma patients were detected. The developed method offers comparative advantages in terms of sensitivity, specificity and selectivity.


Subject(s)
Adrenal Gland Neoplasms , Catecholamines , Chromatography, Liquid , Pheochromocytoma , Tandem Mass Spectrometry , Urinalysis , Catecholamines/analysis , Catecholamines/isolation & purification , Chromatography, High Pressure Liquid , Humans , Pheochromocytoma/urine , Sensitivity and Specificity , Solid Phase Extraction , Urinalysis/methods
15.
Med Oncol ; 30(3): 591, 2013.
Article in English | MEDLINE | ID: mdl-23681778

ABSTRACT

Tau is a microtubule-associated protein and expressed in normal breast epithelial cells and breast cancer. Tau expression in breast cancer may be important for chemotherapy optimization. This study is to investigate the expression of Tau in advanced breast cancer and its significance in taxane-containing neoadjuvant chemotherapy. Levels of Tau protein in advanced breast cancer were detected immunohistochemically. The chemotherapeutic efficacy indexes in Tau(-) group, which includes the remission rate, Miller-Payne pathological reactive grade, and pathologic complete response rate, were improved compared with that in Tau(+) group. There was difference in the efficacy indexes among ER+ subgroups but not among ER- patients. In addition, Tau expression was positively correlated (r = 0.32, P < 0.00). In multivariate analysis, when age, clinical stage, postoperative lymph node metastasis, ER, PR, HER2, Ki-67, TP53, or Tau status were included, postoperative lymph node metastasis and Tau-negative status were identified as independent predictors of pathologic complete response. In conclusion, negative Tau protein expression may be an effective predictor for taxane-containing neoadjuvant chemotherapy, especially in ER+ subgroups. Further study on the molecular mechanism and utility of Tau for individualizing adjuvant chemotherapy is warranted.


Subject(s)
Breast Neoplasms/genetics , Bridged-Ring Compounds/therapeutic use , Taxoids/therapeutic use , tau Proteins/genetics , Adult , Aged , Breast Neoplasms/drug therapy , Chemotherapy, Adjuvant/methods , Female , Humans , Ki-67 Antigen/genetics , Lymphatic Metastasis/genetics , Middle Aged , Neoadjuvant Therapy/methods , Receptor, ErbB-2/genetics , Receptors, Estrogen/genetics , Receptors, Progesterone/genetics , Tumor Suppressor Protein p53/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL