Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Affiliation country
Publication year range
1.
Nano Lett ; 24(10): 3282-3289, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38421230

ABSTRACT

X-ray radiation information storage, characterized by its ability to detect radiation with delayed readings, shows great promise in enabling reliable and readily accessible X-ray imaging and dosimetry in situations where conventional detectors may not be feasible. However, the lack of specific strategies to enhance the memory capability dramatically hampers its further development. Here, we present an effective anion substitution strategy to enhance the storage capability of NaLuF4:Tb3+ nanocrystals attributed to the increased concentration of trapping centers under X-ray irradiation. The stored radiation information can be read out as optical brightness via thermal, 980 nm laser, or mechanical stimulation, avoiding real-time measurement under ionizing radiation. Moreover, the radiation information can be maintained for more than 13 days, and the imaging resolution reaches 14.3 lp mm-1. These results demonstrate that anion substitution methods can effectively achieve high storage capability and broaden the application scope of X-ray information storage.

2.
Bioorg Chem ; 149: 107477, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820938

ABSTRACT

Fms-like tyrosine receptor kinase 3 (FLT3) proteolysis targeting chimeras (PROTACs) emerge as a promising approach to overcome the limitations of FLT3 inhibitors, while the development of orally bioavailable FLT3-PROTACs faces great challenges. Here, we report the rational design and evaluation of a series of Gilteritinib-based FLT3-PROTACs. Among them, B3-2 exhibited the strongest antiproliferative activity against FLT3-ITD mutant AML cells, and significantly induced FLT3-ITD protein degradation. Mechanistic investigations demonstrated that B3-2 induced FLT3-ITD degradation in a ubiquitin-proteasome-dependent manner. More importantly, B3-2 exhibited an oral bioavailability of 5.65%, and oral administration of B3-2 showed good antitumor activity in MV-4-11 xenograft models. Furthermore, B3-2 showed strong antiproliferative activity against FLT3 resistant mutations, highlighting its potential in overcoming drug resistance.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Pyrazines , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacology , Pyrazines/chemical synthesis , Cell Proliferation/drug effects , Animals , Structure-Activity Relationship , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Mice , Drug Discovery , Thiophenes/chemistry , Thiophenes/pharmacology , Thiophenes/chemical synthesis , Proteolysis/drug effects , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Aniline Compounds/chemical synthesis , Cell Line, Tumor , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism
3.
BMC Vet Res ; 20(1): 180, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715028

ABSTRACT

BACKGROUND: Infectious bovine rhinotracheitis (IBR), caused by Bovine alphaherpesvirus-1 (BoAHV-1), is an acute, highly contagious disease primarily characterized by respiratory tract lesions in infected cattle. Due to its severe pathological damage and extensive transmission, it results in significant economic losses in the cattle industry. Accurate detection of BoAHV-1 is of paramount importance. In this study, we developed a real-time fluorescent quantitative PCR detection method for detecting BoAHV-1 infections. Utilizing this method, we tested clinical samples and successfully identified and isolated a strain of BoAHV-1.1 from positive samples. Subsequently, we conducted a genetic evolution analysis on the isolate strain's gC, TK, gG, gD, and gE genes. RESULTS: The study developed a real-time quantitative PCR detection method using SYBR Green II, achieving a detection limit of 7.8 × 101 DNA copies/µL. Specificity and repeatability analyses demonstrated no cross-reactivity with other related pathogens, highlighting excellent repeatability. Using this method, 15 out of 86 clinical nasal swab samples from cattle were found to be positive (17.44%), which was higher than the results obtained from conventional PCR detection (13.95%, 12/86). The homology analysis and phylogenetic tree analysis of the gC, TK, gG, gD, and gE genes of the isolated strain indicate that the JL5 strain shares high homology with the BoAHV-1.1 reference strains. Amino acid sequence analysis revealed that gC, gE, and gG each had two amino acid mutations, while the TK gene had one synonymous mutation and one H to Y mutation, with no amino acid mutations observed in the gD gene. Phylogenetic tree analysis indicated that the JL5 strain belongs to the BoAHV-1.1 genotype and is closely related to American strains such as C33, C14, and C28. CONCLUSIONS: The established real-time fluorescent quantitative PCR detection method exhibits good repeatability, specificity, and sensitivity. Furthermore, genetic evolution analysis of the isolated BoAHV-1 JL-5 strain indicates that it belongs to the BoAHV-1.1 subtype. These findings provide a foundation and data for the detection, prevention, and control Infectious Bovine Rhinotracheitis.


Subject(s)
Alphaherpesvirinae , Infectious Bovine Rhinotracheitis , Real-Time Polymerase Chain Reaction , Infectious Bovine Rhinotracheitis/virology , Animals , Cattle , Alphaherpesvirinae/classification , Alphaherpesvirinae/genetics , Alphaherpesvirinae/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Sensitivity and Specificity , Specimen Handling/veterinary , Phylogeny
4.
Plant Dis ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173266

ABSTRACT

Cucumis melo L. is an important fruit with widespread consumption and commercial value. However, an undescribed disease affecting Hami melon (Cucumis melo L. var. Luhoutian) plants has consistently emerged in the Qihe region of Dezhou, Shandong Province of China since 2021. The disease can occur in both seedling and mature stages of Hami melon plants, and in severely diseased areas, the incidence rate was seen as 40 to 80%. During the seedling stage, the initial symptom is the appearance of water-soaked spots on the leaves. As the disease progresses, the leaves develop necrotic spots, and severely affected plants may exhibit stem rot and decay. In the mature stage, the disease primarily affects the leaves, causing necrotic spots and chlorosis. Under conditions of high humidity, black mold can be observed in the affected areas. Small pieces of symptomatic leaves from six different infected plants were collected and surface-sterilized with 5% NaClO for 3 min and 75% alcohol for 30 s for pathogen isolation (Wang et al., 2020). After rinsing with sterile water and blotted on sterile filter paper, the tissues were established on potato dextrose agar (PDA) media and incubated at 28℃ for 3-4 days. Pure isolates showed up at PDA were obtained through single-spore isolation. Colonies of all 16 isolates obtained by single-spore isolation had similar morphological characteristics on the PDA medium, the mycelium of the isolate appears dense and yellowish-brown on the PDA medium, and also secretes a brownish-red pigment on PDA. Under the opticalmicroscope, the perithecia from PDA media are subglobose spherical in shape, 80-100 µm in diameter, brownish by reflected light, wholly and densely hairy. Terminal hairs are very dense, greyish by reflected light, olive brown to reddish brown by transmitted light, thick-walled, arcuate, circinate, or spirally coiled at the apex. The ascospores within the perithecia are elliptical or droplet-shaped, initially colorless hyaline but later becoming subhyaline slightly gray, with dimensions of 7-9 µm × 4-5 µm. The morphological characteristics of the isolates were consistent with the description of Arcopilus aureus (Wang et.al. 2016). The internal transcribed spacer (ITS) region and ß-tubulin genes of three randomly selected isolates were PCR amplified and sequenced using primers ITS4/ITS5 and Bt2a/Bt2b. The sequences of ITS and ß-tubulin genes were submitted to NCBI with GenBank Accession No. OR539527 and OR640972, respectively. Based on morphological features and phylogenetic analysis, we concluded that the isolates belonged to A. aureus. Pathogenicity tests were conducted by placing agar plugs-containing fungal mycelia and agar blocks (control) on leaves of Hami melon seedlings (n=12) grown at 28°C with 60% humidity in a greenhouse, the assay was repeated three times. Symptoms appeared on the pathogen-inoculated leaves seven days after inoculation, whereas the control treatment remained symptomless. The pathogens were reisolated from diseased leaves and identified as A. aureus based on morphological, and molecular phylogenetic analysis, while Koch'sostulate was used to confirm its life mode. To the best of our knowledge, this is the first report of leaf spot caused by A. aureus on Cucumis melo L. in China.

5.
Bioorg Chem ; 138: 106645, 2023 09.
Article in English | MEDLINE | ID: mdl-37327602

ABSTRACT

FLT3-ITD mutant has been extensively studied as a drug discovery target for acute myeloid leukemia. Based on our previous discovered FLT3 inhibitor (2), a series of urea group based indolone derivatives were designed, synthesized, and biological evaluated as novel FLT3 inhibitors for the treatment of FLT3-ITD positive AML. Among them, compound LC-3 exhibited potent inhibitory effects against FLT3 (IC50 = 8.4 nM) and significantly inhibited the proliferation of FLT3-ITD positive AML cells MV-4-11 (IC50 = 5.3 nM). In the cellular context, LC-3 strongly inhibited FLT3-mediated signaling pathways and induced cellular apoptosis by arresting cell cycle in G1 phase. In the in vivo studies, LC-3 significantly suppressed the tumor growth on MV-4-11 xenograft models (10 mg/kg/day, TGI = 92.16%) without exhibiting obvious toxicity. These results suggested that compound LC-3 might be a potential drug candidate for FLT3-ITD positive AML.


Subject(s)
Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Apoptosis , Signal Transduction , Drug Discovery , Leukemia, Myeloid, Acute/pathology , fms-Like Tyrosine Kinase 3/metabolism , Cell Line, Tumor , Mutation , Cell Proliferation
6.
Appl Microbiol Biotechnol ; 107(12): 3911-3924, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37178309

ABSTRACT

Acetoin, an important and high-value added bio-based platform chemical, has been widely applied in fields of foods, cosmetics, chemical synthesis, and agriculture. Lactate is a significant intermediate short-chain carboxylate in the anaerobic breakdown of carbohydrates that comprise ~ 18% and ~ 70% in municipal wastewaters and some food processing wastewaters, respectively. In this work, a series of engineered Escherichia coli strains were constructed for efficient production of acetoin from cheaper and abundant lactate through heterogenous co-expression of fusion protein (α-acetolactate synthetase and α-acetolactate decarboxylase), lactate dehydrogenase and NADH oxidase, and blocking acetate synthesis pathways. After optimization of whole-cell bioconversion conditions, the engineered strain BL-11 produced 251.97 mM (22.20 g/L) acetoin with a yield of 0.434 mol/mol in shake flasks. Moreover, a titer of 648.97mM (57.18 g/L) acetoin was obtained in 30 h with a yield of 0.484 mol/mol lactic acid in a 1-L bioreactor. To the best of our knowledge, this is the first report on the production of acetoin from renewable lactate through whole-cell bioconversion with both high titer and yield, which demonstrates the economy and efficiency of acetoin production from lactate. Key Points • The lactate dehydrogenases from different organisms were expressed, purified, and assayed. • It is the first time that acetoin was produced from lactate by whole-cell biocatalysis. • The highest titer of 57.18 g/L acetoin was obtained with high theoretical yield in a 1-L bioreactor.


Subject(s)
Acetoin , Lactic Acid , Acetoin/metabolism , Lactic Acid/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Wastewater , Bioreactors , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism
7.
BMC Pediatr ; 23(1): 174, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37060094

ABSTRACT

BACKGROUND: Several previous studies have identified a potential role that the gut microbiome can play in autism spectrum disorder (ASD) in children, but little is known about how variations in the virome may be involved in ASD. We aimed to understand the changes in the gut DNA virome of children with ASD. METHODS: A case-control study was presented, in which 13 two-children families were observed while considering the age, mode of birth, history of antibiotic use, and vaccination history to minimize the influence of confounding factors. DNA viral metagenomic sequencing was successfully performed on stool samples from 11 children with ASD and 12 healthy non-ASD children. The basic composition and gene function of the participants' fecal DNA virome were detected and analyzed. Finally, the abundance and diversity of the DNA virome of children with ASD and their healthy siblings were compared. RESULTS: The gut DNA virome in children aged 3-11 years was found to be dominated by the Siphoviridae family of Caudovirales. The proteins encoded by the DNA genes mainly carry out the functions of genetic information transmission and metabolism. Compared the gut DNA virome of ASD and healthy non-ASD children, their abundance of Caudovirales and Petitvirales both showed a significant negative correlation (r = -0.902, P < 0.01), there was no statistically significant difference in the relative abundance of viruses at the order and family levels, and a difference in the relative abundance at the genus level for Skunavirus (Ζ = -2.157, P = 0.031). Viral α diversity was reduced in children with ASD, but α diversity and ß diversity did not differ statistically between groups. CONCLUSIONS: This study indicates that elevated Skunavirus abundance and decreased α diversity in the gut DNA virulence group of children with ASD, but no statistically significant difference in the change in alpha and beta diversity. This provides preliminary cumulative information on virological aspects of the relationship between the microbiome and ASD, and should benefit future multi-omics and large sample studies on the gut microbes in children with ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/genetics , Case-Control Studies , Virome , DNA
8.
Mikrochim Acta ; 190(11): 432, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37806989

ABSTRACT

An ochratoxin A (OTA) electrochemical biosensor based on a cascade signal amplification strategy with Ag nanoparticles (AgNPs) and ring opening polymerization (ROP) was constructed. The large specific surface area of AgNPs was used to increase the loading of OTA aptamer on the electrode surface, enhancing the ability to capture OTA as a way to achieve the first signal amplification. The OTA antibody modified with polyethylenimine specifically recognizes the OTA, forming an aptamer-OTA-antibody sandwich structure. The amino group on polyethylenimine initiates the ROP reaction with α-amino acid-n-carboxylic anhydride-ferrocene (NCA-Fc) as the monomer. A large number of electrochemical signal units of ferrocene are introduced into the sensing system for a second signal amplification. By amplifying the signal twice, the sensitivity of the sensor is improved. Under the optimal conditions, the detection range of the sensor is 1 pg·mL-1 ~ 1 µg·mL-1, while the detection limit is as low as 117 fg·mL-1. Moreover, the sensor has the advantages of high sensitivity, good stability and selectivity. Standard addition recovery experiment proved that the sensing system can be successfully used for the detection of OTA in four actual samples with recoveries in the range 90.0 to 113% with RSDs of 0.6 to 5.2%, providing a new idea for the pollution assessment of mycotoxins.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Metallocenes/chemistry , Metal Nanoparticles/chemistry , Polyethyleneimine , Polymerization , Electrochemical Techniques , Silver
9.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838875

ABSTRACT

3-Hydroxypropionic acid (3-HP) is a platform chemical with a wide range of existing and potential applications, including the production of poly(3-hydroxypropionate) (P-3HP), a biodegradable plastic. The microbial synthesis of 3-HP has attracted significant attention in recent years due to its green and sustainable properties. In this paper, we provide an overview of the microbial synthesis of 3-HP from four major aspects, including the main 3-HP biosynthesis pathways and chassis strains used for the construction of microbial cell factories, the major carbon sources used for 3-HP production, and fermentation processes. Recent advances in the biosynthesis of 3-HP and related metabolic engineering strategies are also summarized. Finally, this article provides insights into the future direction of 3-HP biosynthesis.


Subject(s)
Biosynthetic Pathways , Metabolic Networks and Pathways , Lactic Acid , Fermentation , Metabolic Engineering
10.
Crit Rev Biotechnol ; 42(8): 1135-1156, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34806505

ABSTRACT

Acetoin, a high-value-added bio-based platform chemical, is widely used in foods, cosmetics, agriculture, and the chemical industry. It is an important precursor for the synthesis of: 2,3-butanediol, liquid hydrocarbon fuels and heterocyclic compounds. Since the fossil resources are becoming increasingly scarce, biological production of acetoin has received increasing attention as an alternative to chemical synthesis. Although there are excellent reviews on the: application, catabolism and fermentative production of acetoin, little attention has been paid to acetoin production via: electrode-assisted fermentation, whole-cell biocatalysis, and in vitro/cell-free biocatalysis. In this review, acetoin biosynthesis pathways and relevant key enzymes are firstly reviewed. In addition, various strategies for biological acetoin production are summarized including: cell-free biocatalysis, whole-cell biocatalysis, microbial fermentation, and electrode-assisted fermentation. The advantages and disadvantages of the different approaches are discussed and weighed, illustrating the increasing progress toward economical, green and efficient production of acetoin. Additionally, recent advances in acetoin extraction and recovery in downstream processing are also briefly reviewed. Moreover, the current issues and future prospects of diverse strategies for biological acetoin production are discussed, with the hope of realizing the promises of industrial acetoin biomanufacturing in the near future.


Subject(s)
Acetoin , Butylene Glycols , Acetoin/chemistry , Acetoin/metabolism , Butylene Glycols/metabolism , Fermentation , Biocatalysis
11.
Microb Cell Fact ; 21(1): 150, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35879766

ABSTRACT

BACKGROUND: 2,3-butanediol is an important platform compound which has a wide range of applications, involving in medicine, chemical industry, food and other fields. Especially the optically pure (2R,3R)-2,3-butanediol can be employed as an antifreeze agent and as the precursor for producing chiral compounds. However, some (2R,3R)-2,3-butanediol overproducing strains are pathogenic such as Enterobacter cloacae and Klebsiella oxytoca. RESULTS: In this study, a (3R)-acetoin overproducing C. glutamicum strain, CGS9, was engineered to produce optically pure (2R,3R)-2,3-butanediol efficiently. Firstly, the gene bdhA from B. subtilis 168 was integrated into strain CGS9 and its expression level was further enhanced by using a strong promoter Psod and ribosome binding site (RBS) with high translation initiation rate, and the (2R,3R)-2,3-butanediol titer of the resulting strain was increased by 33.9%. Then the transhydrogenase gene udhA from E. coli was expressed to provide more NADH for 2,3-butanediol synthesis, which reduced the accumulation of the main byproduct acetoin by 57.2%. Next, a mutant atpG was integrated into strain CGK3, which increased the glucose consumption rate by 10.5% and the 2,3-butanediol productivity by 10.9% in shake-flask fermentation. Through fermentation engineering, the most promising strain CGK4 produced a titer of 144.9 g/L (2R,3R)-2,3-butanediol with a yield of 0.429 g/g glucose and a productivity of 1.10 g/L/h in fed-batch fermentation. The optical purity of the resulting (2R,3R)-2,3-butanediol surpassed 98%. CONCLUSIONS: To the best of our knowledge, this is the highest titer of optically pure (2R,3R)-2,3-butanediol achieved by GRAS strains, and the result has demonstrated that C. glutamicum is a competitive candidate for (2R,3R)-2,3-butanediol production.


Subject(s)
Corynebacterium glutamicum , Acetoin/metabolism , Butylene Glycols/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Escherichia coli/metabolism , Fermentation , Glucose/metabolism , Metabolic Engineering/methods
12.
J Integr Plant Biol ; 64(5): 1087-1101, 2022 May.
Article in English | MEDLINE | ID: mdl-35348292

ABSTRACT

Calcium (Ca2+ )/calmodulin (CaM)-dependent protein kinase (CCaMK) is an important positive regulator of antioxidant defenses and tolerance against oxidative stress. However, the underlying molecular mechanisms are largely unknown. Here, we report that the rice (Oryza sativa) CCaMK (OsDMI3) physically interacts with and phosphorylates OsUXS3, a cytosol-localized UDP-xylose synthase. Genetic and biochemical evidence demonstrated that OsUXS3 acts downstream of OsDMI3 to enhance the oxidative stress tolerance conferred by higher catalase (CAT) activity. Indeed, OsUXS3 interacted with CAT isozyme B (OsCATB), and this interaction was required to increase OsCATB protein abundance under oxidative stress conditions. Furthermore, we showed that OsDMI3 phosphorylates OsUXS3 on residue Ser-245, thereby further promoting the interaction between OsUXS3 and OsCATB. Our results indicate that OsDMI3 promotes the association of OsUXS3 with OsCATB to enhance CAT activity under oxidative stress. These findings reveal OsUXS3 as a direct target of OsDMI3 and demonstrate its involvement in antioxidant defense.


Subject(s)
Oryza , Antioxidants/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Gene Expression Regulation, Plant , Oryza/metabolism , Oxidative Stress , Phosphorylation , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Inorg Chem ; 60(15): 11616-11625, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34284577

ABSTRACT

Wearable biosensing and food safety inspection devices with high thermal stability, high brightness, and broad near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) could accelerate the next-generation NIR light applications. In this work, NIR La3-xGdxGa5GeO14:Cr3+ (x = 0 to 1.5) phosphors were successfully fabricated by a high-temperature solid-state method. Here, by doping Gd3+ ions into the La3+ sites in the La3Ga5GeO14 matrix, a 7.9-fold increase in the photoluminescence (PL) intensity of the Cr3+ ions, as well as a remarkably broadened full width at half-maximum (FWHM) of the corresponding PL spectra, is achieved. The enhancements in the PL, PLE intensity, and FWHM are attributed to the suppression of the nonradiative transition process of Cr3+ when Gd3+ ions are doped into the host, which can be demonstrated by the decay curves. Moreover, the La1.5Gd1.5Ga5GeO14:Cr3+ phosphor displays an abnormally negative thermal phenomenon that the integral PL intensity reaches 131% of the initial intensity when the ambient temperature increases to 160 °C. Finally, the broadband NIR pc-LED was fabricated based on the as-explored La1.5Gd1.5Ga5GeO14:Cr3+ phosphors combined with a 460 nm chip, and the potential applications for the broadband NIR pc-LEDs were discussed in detail.

14.
J Enzyme Inhib Med Chem ; 36(1): 1436-1453, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34229558

ABSTRACT

This study describes the synthesis and vacuole-inducing activity of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carbohydrazide derivatives, including five potent derivatives 12c, 12 g, 12i, 12n, and 12A that exhibit excellent vacuole-inducing activity. Remarkably, 12A effectively induces methuosis in tested cancer cells but not human normal cells. In addition, 12A exhibits high pan-cytotoxicity against different cancer cell lines but is hardly toxic to normal cells. It is found that the 12A-induced vacuoles are derived from macropinosomes but not autophagosomes. The 12A-induced cytoplasmic vacuoles may originate from the endoplasmic reticulum (ER) and be accompanied by ER stress. The MAPK/JNK signalling pathway is involved in the 12A-induced methuotic cell death. Moreover, 12A exhibits significant inhibition of tumour growth in the MDA-MB-231 xenograft mouse model. The excellent potency and selectivity of 12A prompt us to select it as a good lead compound for further development of methuosis inducers and investigation of the molecular and cellular mechanisms underlying methuosis.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Hydrazines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
15.
Microb Cell Fact ; 19(1): 102, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32398078

ABSTRACT

BACKGROUND: Acetoin, especially the optically pure (3S)- or (3R)-enantiomer, is a high-value-added bio-based platform chemical and important potential pharmaceutical intermediate. Over the past decades, intense efforts have been devoted to the production of acetoin through green biotechniques. However, efficient and economical methods for the production of optically pure acetoin enantiomers are rarely reported. Previously, we systematically engineered the GRAS microorganism Corynebacterium glutamicum to efficiently produce (3R)-acetoin from glucose. Nevertheless, its yield and average productivity were still unsatisfactory for industrial bioprocesses. RESULTS: In this study, cellular carbon fluxes in the acetoin producer CGR6 were further redirected toward acetoin synthesis using several metabolic engineering strategies, including blocking anaplerotic pathways, attenuating key genes of the TCA cycle and integrating additional copies of the alsSD operon into the genome. Among them, the combination of attenuation of citrate synthase and inactivation of phosphoenolpyruvate carboxylase showed a significant synergistic effect on acetoin production. Finally, the optimal engineered strain CGS11 produced a titer of 102.45 g/L acetoin with a yield of 0.419 g/g glucose at a rate of 1.86 g/L/h in a 5 L fermenter. The optical purity of the resulting (3R)-acetoin surpassed 95%. CONCLUSION: To the best of our knowledge, this is the highest titer of highly enantiomerically enriched (3R)-acetoin, together with a competitive product yield and productivity, achieved in a simple, green processes without expensive additives or substrates. This process therefore opens the possibility to achieve easy, efficient, economical and environmentally-friendly production of (3R)-acetoin via microbial fermentation in the near future.


Subject(s)
Acetoin/metabolism , Corynebacterium glutamicum/metabolism , Metabolic Engineering/methods , Batch Cell Culture Techniques , Bioreactors , Corynebacterium glutamicum/genetics , Fermentation , Glucose/metabolism , Metabolic Networks and Pathways , Operon
16.
Bioorg Chem ; 102: 104064, 2020 09.
Article in English | MEDLINE | ID: mdl-32653610

ABSTRACT

In continuation of our previous work on the investigation of CDK9 inhibitors bearing indole moiety for the discovery of novel anticancer agents, novel methylenehydrazine-1-carboxamide derivatives with (5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole scaffold were designed, synthesized, and evaluated for the CDK9 inhibitory activity and anticancer activity. Biological activity results demonstrated that most of these derivatives possessed good inhibitory on the kinase activity of CDK9 such as blocking its phosphorylation function and inhibiting HIV-1 transcription. Compound 12i was found to be the most potent CDK9 inhibitor and exhibited excellent anticancer activity against HepG2, A375, MCF-7, and A549, but low toxic on normal cells including HaCaT and MCF-10A. Further studies revealed that as a result of CDK9 inhibition and subsequent inhibition of phosphorylation at Serine 2 of the RNAPII CTD, the representative compound 12i dose-dependently increased cleaved PARP level, exerting its antiproliferative effect through induction of apoptosis in cancer cells. Finally, the molecular docking analysis implied that 12i had a good binding affinity with CDK9. In summary, 12i is a potent CDK9 inhibitor and can be considered as a good lead-candidate for developing potential anticancer drugs.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Indoles/chemistry , Molecular Docking Simulation/methods , Pyrimidines/chemical synthesis , Pyrimidines/therapeutic use , Drug Design , Humans , Molecular Structure , Pyrimidines/pharmacology , Structure-Activity Relationship
17.
Appl Microbiol Biotechnol ; 103(5): 2155-2170, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30623201

ABSTRACT

Anaerobic fermentation is a favorable process for microbial production of bulk chemicals like ethanol and organic acids. Low productivity is the bottleneck of several anaerobic processes which has significant impact on the technique competitiveness of production strain. Improving growth rate of production strain can speed up the total production cycle and may finally increase productivity of anaerobic processes. In this work, evolutionary engineering of wild-type strain Escherichia coli W3110 was adopted to improve anaerobic growth in mineral medium. Significant increases in exponential growth rate and stationary cell density were achieved in evolved strain WE269, and a 96.5% increase in lactate productivity has also been observed in batch fermentation of this strain with M9 minimal medium. Then, an engineered strain for lactate production (BW100) was constructed by using WE269 as a platform and 98.3 g/L lactate (with an optical purity of D-lactate above 95%) was produced in a 5-L bioreactor after 48 h with a productivity of 2.05 g/(L·h). Finally, preliminary investigation demonstrated that mutation in sucD (sucD M245I) (encoding succinyl-CoA synthetase); ilvG (ilvG Δ1bp) (encoding acetolactate synthase 2 catalytic subunit), and rpoB (rpoB T1037P) (encoding RNA polymerase ß subunit) significantly improved anaerobic growth of E. coli. Double-gene mutation in ilvG and sucD resumed most of the growth potential of evolved strain WE269. This work suggested that improving anaerobic growth of production host can increase productivity of organic acids like lactate, and specific mutation-enabled improved growth may also be applied to metabolic engineering for production of other bulk chemicals.


Subject(s)
Bioreactors/microbiology , Escherichia coli/genetics , Escherichia coli/metabolism , Lactic Acid/biosynthesis , Metabolic Engineering/methods , Acetolactate Synthase/genetics , Anaerobiosis , Culture Media/chemistry , DNA-Directed RNA Polymerases/genetics , Escherichia coli/growth & development , Escherichia coli Proteins/genetics , Fermentation , Thiolester Hydrolases/genetics
18.
J Ind Microbiol Biotechnol ; 46(7): 899-909, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30963328

ABSTRACT

Lactoyl-CoA is critical for the biosynthesis of biodegradable and biocompatible lactate-based copolymers, which have wide applications. However, reports on acetyl-CoA: lactate CoA-transferases (ALCTs) are rare. To exploit novel ALCTs, amino acid sequence similarity searches based on the CoA-transferases from Clostridium propionicum and Megasphaera elsdenii were conducted. Two known and three novel enzymes were expressed, purified and characterized. Three novel ALCTs were identified, one each from Megasphaera sp. DISK 18, Clostridium lactatifermentans An75 and Firmicutes bacterium CAG: 466. ME-PCT from Megasphaera elsdenii had the highest catalytic efficiency for both acetyl-CoA (264.22 s-1 mM-1) and D-lactate (84.18 s-1 mM-1) with a broad temperature range for activity and good stability. This study, therefore, offers novel and efficient enzymes for lactoyl-CoA generation. To our best knowledge, this is the first report on the systematic mining of ALCTs, which offers valuable new tools for the engineering of pathways that rely on these enzymes.


Subject(s)
Acyl Coenzyme A/metabolism , Coenzyme A-Transferases/metabolism , Acetyl Coenzyme A/metabolism , Clostridium/metabolism , Coenzyme A-Transferases/genetics , Coenzyme A-Transferases/isolation & purification , Lactic Acid/metabolism
19.
J Xray Sci Technol ; 27(2): 297-306, 2019.
Article in English | MEDLINE | ID: mdl-30856148

ABSTRACT

OBJECTIVE: To explore the clinical application of diffusion-weighted magnetic resonance imaging (DWI) in nasopharyngeal carcinoma (NPC) diagnosis, detection of lymph node metastasis, radiotherapy and prognosis. METHODS: Twenty patients with diagnosed NPC in an early stage of radiotherapy were enrolled in our department between May 2010 and May 2013. T1 and T2 weighted magnetic resonance imaging and DWI of the nasopharynx and neck were performed 1 week before radiotherapy, during radiotherapy at a dose of 60 Gy, and 1 month after radiotherapy. Pertinent measurements and related data were recorded. RESULTS: In comparison with that before radiotherapy, the ADC value of the nasopharyngeal primary lesion increased significantly during radiotherapy at a dose of 60 Gy and at 1 month after radiotherapy (F = 187.160, P = 0.000). When the dose of radiotherapy reached 60 Gy, the DWI signals from both the neck and the retropharyngeal lymph nodes were significantly lower than those before radiotherapy. CONCLUSION: DWI can be used for sensitive and accurate diagnosis of lymph node metastasis in the neck and retropharyngeal space, monitoring of the radiotherapy effect in early stages of NPC and development of new medical treatment strategies.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Adolescent , Adult , Aged , Female , Humans , Lymphatic Metastasis/diagnostic imaging , Male , Middle Aged , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/radiotherapy , Predictive Value of Tests , Prognosis , Young Adult
20.
Biotechnol Lett ; 38(8): 1307-14, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27071937

ABSTRACT

OBJECTIVES: To construct an Escherichia coli strain capable of producing riboflavin with high titer and yield. RESULTS: A low copy number plasmid pLS01 containing a riboflavin operon under the control of a constitutive promoter was constructed and introduced into Escherichia coli MG1655. Subsequently, the pfkA, edd and ead genes were disrupted, and the resulting strain LS02T produced 667 mg riboflavin/l in MSY medium supplied with 10 g glucose/l in flask cultivation. In a fed-batch process, riboflavin production of the strain reached 10.4 g/l with a yield of 56.8 mg riboflavin/g glucose. CONCLUSION: To our knowledge, this is the first report of engineered E. coli strains that can produce more than 10 g riboflavin/l in fed-batch cultivation, indicating that E. coli has potential for riboflavin production.


Subject(s)
Escherichia coli/enzymology , Phosphofructokinases/genetics , Phosphofructokinases/metabolism , Riboflavin/biosynthesis , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fermentation/genetics , Fermentation/physiology , Industrial Microbiology , Riboflavin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL