Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Am Chem Soc ; 146(34): 23872-23880, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39158693

ABSTRACT

The potential-dependent negative fractional reaction orders with respect to the CO partial pressures were measured for CO2 electroreduction (CO2R) on Au under mass-transfer-controlled conditions using a rotating ring-disk electrode setup. At high overpotentials, the CO reaction order approaches -1 due to enhanced CO adsorption on Au, which is supported by kinetic analysis and density functional theory (DFT) simulations. This work illustrates that the CO site-blocking effect cannot be ignored, even on a weak CO-binding metal such as Au in the electrochemical environment. The CO site-blocking effect can greatly hamper the activity and the selectivity of the CO2R to CO. This observation enriches the current mechanistic understanding of the CO2R and could have significant implications not only in the theoretical modeling of the CO2R but also in the evaluation of intrinsic CO2R activity at practical current density and high conversion conditions.

2.
J Chem Phys ; 161(10)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39248383

ABSTRACT

Polarons are quasiparticles formed as a result of lattice distortions induced by charge carriers. The single-electron Holstein model captures the fundamentals of single polaron physics. We examine the power of the exponential ansatz for the polaron ground-state wavefunction in its coupled cluster, canonical transformation, and (canonically transformed) perturbative variants across the parameter space of the Holstein model. Our benchmark serves to guide future developments of polaron wavefunctions beyond the single-electron Holstein model.

3.
J Phys Chem A ; 127(47): 9974-9984, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37967028

ABSTRACT

Characterizing the electronic structure of the iron-sulfur clusters in nitrogenase is necessary to understand their role in the nitrogen fixation process. One challenging task is to determine the protonation state of the intermediates in the nitrogen fixing cycle. Here, we use a dimeric iron-sulfur model to study relative energies of protonation at C, S, or Fe. Using a composite method based on coupled cluster and density matrix renormalization group energetics, we converge the relative energies of four protonated configurations with respect to basis set and correlation level. We find that accurate relative energies require large basis sets as well as a proper treatment of multireference and relativistic effects. We have also tested ten density functional approximations for these systems. Most of them give large errors in their relative energies. The best performing functional in this system is B3LYP, which gives mean absolute and maximum deviations of only 10 and 13 kJ/mol with respect to our correlated wave function estimates, respectively, comparable to the uncertainty in our correlated estimates. Our work provides benchmark results for the calibration of new approximate electronic structure methods and density functionals for these problems.

4.
J Chem Phys ; 159(23)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38108484

ABSTRACT

block2 is an open source framework to implement and perform density matrix renormalization group and matrix product state algorithms. Out-of-the-box it supports the eigenstate, time-dependent, response, and finite-temperature algorithms. In addition, it carries special optimizations for ab initio electronic structure Hamiltonians and implements many quantum chemistry extensions to the density matrix renormalization group, such as dynamical correlation theories. The code is designed with an emphasis on flexibility, extensibility, and efficiency and to support integration with external numerical packages. Here, we explain the design principles and currently supported features and present numerical examples in a range of applications.

5.
Inorg Chem ; 61(46): 18710-18718, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36356166

ABSTRACT

A novel Zn benzotriazolate metal-organic framework (MOF), [Zn9(OAc)6(bbtm)6] (1, bbtm2- = bis(benzotriazolyl)methanone, OAc- = acetate), has been synthesized and structurally characterized using micro-crystal electron diffraction. The framework contains 12-connected nonanuclear Zn clusters with Zn-OAc groups separated by short intercluster Zn···Zn distances of 6.06 Å. Postsynthetic OAc-/OH- ligand exchange followed by thermal activation generates 1a-OH, which adsorbs CO2 at very low pressures (1.37 mmol/g at 2.5 mbar) and requires an unusually high desorption temperature (>160 °C). Diffuse reflectance IR Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations have been used to interrogate the CO2 binding mechanism in 1a-OH. The formation of unsymmetric bridging carbonate ligands within the Zn···Zn pockets accompanied by strong hydrogen bonding of the carbonate with a neighboring zinc aqua ligand explains the remarkably strong CO2 affinity of 1a-OH.

6.
Angew Chem Int Ed Engl ; 61(19): e202200937, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35233878

ABSTRACT

Simulating photosynthesis has long been one of the ideas for realizing the conversion of solar energy into industrial chemicals. Heterogeneous N2 photofixation in water is a promising way for sustainable production of ammonia. However, a mechanistic understanding of the complex aqueous photocatalytic N2 reduction is still lacking. In this study, a light-dependent surface hydrogenation mechanism and light-independent protection of catalyst surface for N2 reduction are revealed on ultrathin Bi4 O5 Br2 (BOB) nanosheets, in which the creation and annihilation of surface bromine vacancies can be controlled via a surface bromine cycle. Our rapid scan in situ FT-IR spectra verify that photocatalytic N2 reduction proceeds through an associative alternating mechanism on BOB surface with bromine vacancies (BrV-BOB). This work provides a new strategy to combine light-dependent facilitated reaction with light-independent regeneration of catalyst for advancing sustainable ammonia production.

7.
Nat Mater ; 19(5): 528-533, 2020 May.
Article in English | MEDLINE | ID: mdl-32094495

ABSTRACT

Developing a precise and reproducible bandgap tuning method that enables tailored design of materials is of crucial importance for optoelectronic devices. Towards this end, we report a sphere diameter engineering (SDE) technique to manipulate the bandgap of two-dimensional (2D) materials. A one-to-one correspondence with an ideal linear working curve is established between the bandgap of MoS2 and the sphere diameter in a continuous range as large as 360 meV. Fully uniform bandgap tuning of all the as-grown MoS2 crystals is realized due to the isotropic characteristic of the sphere. More intriguingly, both a decrease and an increase of the bandgap can be achieved by constructing a positive or negative curvature. By fusing individual spheres in the melted state, post-synthesis bandgap adjustment of the supported 2D materials can be realized. This SDE technique, showing good precision, uniformity and reproducibility with high efficiency, may further accelerate the potential applications of 2D materials.

8.
J Chem Phys ; 153(2): 024109, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32668948

ABSTRACT

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment. We then summarize the capabilities of PySCF for molecular and solid-state simulations. Finally, we describe the growing ecosystem of projects that use PySCF across the domains of quantum chemistry, materials science, machine learning, and quantum information science.

9.
J Org Chem ; 83(9): 5149-5159, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29648810

ABSTRACT

A simple and unified method for the synthesis of alkylated dihydroquinolinone and pyrrolo[1,2- a]indole derivatives in moderate to high yields (up to 91%) with excellent diastereoselectivity (>20:1 dr) was developed. The inexpensive FeCl2·4H2O works as catalyst, and easily prepared peresters (or peroxides) from aliphatic acids act as alkylating reagents and single electron oxidants. This environmentally friendly reaction proceeds via an FeCl2-catalyzed alkyl radical cascade addition/cyclization fashion.

10.
Arch Anim Nutr ; 72(4): 275-289, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29972320

ABSTRACT

Two experiments were conducted to estimate the metabolisable energy (ME) and net energy (NE) of rice straw and wheat straw for beef cattle. In each experiment, 16 Wandong bulls (Chinese indigenous yellow cattle) were assigned to 4 dietary treatments in a completely randomised design. Four dietary treatments included one corn silage-concentrate basal diet and three test diets in which the basal diet was partly substituted by rice straw (Exp. 1) or wheat straw (Exp. 2) at 100, 300 and 600 g/kg. Total collection of faeces and urine was conducted for 5 consecutive days after a 2-week adaption period, followed by a 4-d period where gas exchange measurements were measured by an open-circuit respiratory cage. Linear regression equations of rice straw- or wheat straw-associated ME and NE contribution in test diets against rice straw or wheat straw substitution amount were developed to predict the ME and NE values of rice straw and wheat straw. These regression equations resulted in ME and NE values (dry matter basis) of 6.76 and 3.42 MJ/kg for rice straw and 6.43 and 3.28 MJ/kg for wheat straw, respectively. The NE and ME requirement for maintenance of Wandong cattle fed a straw-based diet were 357 and 562 kJ·kg-0.75·d-1, respectively. The regression-derived ME and NE have lower standard errors and coefficients of variation than those estimated by any single substitution ratio. Our study found that the regression method based on multiple point substitution is more reliable than the substitution method for energy evaluation of feedstuffs for beef cattle.


Subject(s)
Cattle/physiology , Energy Intake , Energy Metabolism , Oryza/chemistry , Silage/analysis , Triticum/chemistry , Animal Nutritional Physiological Phenomena , Animals , Calorimetry, Indirect/veterinary , Diet/veterinary , Male , Random Allocation
11.
Phys Chem Chem Phys ; 18(43): 29914-29922, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27761539

ABSTRACT

The relative stability of TiO2 in the rutile and anatase structure is wrongly described by density functional theory in various local, semilocal, or even hybrid functional approximations. In this work, we have found that by considering high-order correlations in the adiabatic connection fluctuation-dissipation theory with the random phase approximation (ACFDT-RPA), rutile is correctly predicted to be more stable than anatase, which can be physically attributed to different characters in the electronic band structure of rutile and anatase, including, in particular, that rutile has a smaller band gap than anatase. We further consider the zero-point energy and finite-temperature effects based on the harmonic approximation, and we found that the inclusion of the zero-point energy correction can further increase the relative stability of rutile, and leads to a better quantitative agreement with available experimental measurements. Our study indicates the importance of considering high-order dynamical correlation effects to correctly predict the relative phase stability of polymorphic materials, especially for those systems in which the less stable phase as predicted by conventional local, semilocal or even hybrid density functional approximations has a smaller band gap than the more stable one.

12.
Bioorg Med Chem Lett ; 25(8): 1799-1803, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25736994

ABSTRACT

The worldwide threat from tuberculosis (TB) has resulted in great demand for new drugs, particularly those that can treat multidrug-resistant TB. We synthesized novel pleuromutilin derivatives with N-benzylamine side chain substituted at the C14 position and evaluated their activity in vitro against a virulent strain of Mycobacterium tuberculosis (H37Rv). The primary assay results showed that five compounds inhibited the H37Rv at 20µM, with a MIC of one of the analogues as low as 7.2µM.


Subject(s)
Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Diterpenes/chemical synthesis , Diterpenes/chemistry , Diterpenes/pharmacology , Drug Design , Drug Resistance, Microbial , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Polycyclic Compounds , Structure-Activity Relationship , Pleuromutilins
13.
J Chem Theory Comput ; 20(3): 1143-1156, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38300885

ABSTRACT

We apply the Lang-Firsov (LF) transformation to electron-boson coupled Hamiltonians and variationally optimize the transformation parameters and molecular orbital coefficients to determine the ground state. Møller-Plesset (MP-n, with n = 2 and 4) perturbation theory is then applied on top of the optimized LF mean-field state to improve the description of electron-electron and electron-boson correlations. The method (LF-MP) is applied to several electron-boson coupled systems, including the Hubbard-Holstein model, diatomic molecule dissociation (H2, HF), and the modification of proton transfer reactions (malonaldehyde and aminopropenal) via the formation of polaritons in an optical cavity. We show that with a correction for the electron-electron correlation, the method gives quantitatively accurate energies comparable to that by exact diagonalization or coupled-cluster theory. The effects of multiple photon modes, spin polarization, and the comparison to the coherent state MP theory are also discussed.

14.
ACS Nano ; 18(13): 9670-9677, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38516986

ABSTRACT

Employing water as a hydrogen source to participate in the hydrogen atom transfer (HAT) process is a low-cost and carbon-free process demonstrating great economic and environmental potential in catalysis. However, the low efficiency of hydrogen atom abstraction from water leads to slow kinetics of HAT for most hydrogenative reactions. Here, we prepared ultrathin Bi4O5Cl2 nanosheets where the surface can be in situ reconstructed via hydroxylation under light illumination to facilitate the abstraction of hydrogen atoms from pure water for efficient nitrogen fixation. Consequently, the isotope labeling in situ Fourier-transform infrared spectroscopy (FT-IR) involving H2O and D2O has clearly revealed that the hydroxyl groups tend to be adsorbed on the chloride vacancy sites on the Bi4O5Cl2 surface to form hydroxylated surfaces, where the hydroxylated photocatalyst surface enables partial dehydrogenation of water into H2O2, allowing the utilization of H atoms for efficient of N2 hydrogenation via HAT steps. This work elucidates the in-depth reaction mechanism of hydrogen atom extraction from H2O molecules via the light-generated chloride vacancy to promote photocatalytic nitrogen fixation, ultimately enabling the inspiration and providing crucial rules for the design of important functional materials that can efficiently deliver active hydrogen for chemical synthesis.

15.
Small Methods ; : e2400891, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39188195

ABSTRACT

Lattice strain is widely investigated to improve the performance of heterogeneous catalysts, however, the effect of lattice strain is under-explored in high-entropy oxide based photocatalyst. In this study, noble-metal-free (CoCrMnFeNi)Ox with lattice strain is synthesized using a temperature-controlled, template-free and salt-assisted strategy. In the presence of lattice strain, an intensive internal electric field is formed in (CoCrMnFeNi)Ox, promoting the separation of photoinduced charge carriers. The size of the (CoCrMnFeNi)Ox can be tuned by varying the calcination temperature. Specifically, (CoCrMnFeNi)Ox prepared at a higher temperature possesses a smaller grain size exposing more active sites, resulting in an enhanced CO2 photomethanation performance. This work provides valuable insights for the rational design of the photocatalysts and highlights the promising role of high-entropy oxides in heterogeneous photocatalysis.

16.
Front Microbiol ; 14: 1256748, 2023.
Article in English | MEDLINE | ID: mdl-38163070

ABSTRACT

Cold stress is a significant environmental stimulus that negatively affects the health, production, and welfare of animals and birds. However, the specific effects of cold stimulation combined with lipopolysaccharide (LPS) on the mouse intestine remain poorly understood. Therefore, we designed this research to explore the effect of cold stimulation + LPS on mice intestine via microbiome and microbiota sequencing. Forty-eight mice were randomly divided into four experimental groups (n = 12): Control (CC), LPS-induced (CL), cold normal saline-induced (MC) and LPS + cold normal saline-induced (ML). Our results showed body weight was similar among different groups of mice. However, the body weight of mice in groups CC and CL were slightly higher compared to those in groups MC and ML. The results of gene expressions reflected that CL and ML exposure caused gut injury and barrier dysfunction, as evident by decreased ZO-1, OCCLUDIN (P < 0.01), and CASPASE-1 (P < 0.01) expression in the intestine of mice. Moreover, we found that cold stress induced oxidative stress in LPS-challenged mice by increasing malondialdehyde (MDA) accumulation and decreasing the antioxidant capacity [glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total and antioxidant capacity (T-AOC)]. The cold stress promoted inflammatory response by increased IL-1ß in mice treated with cold normal saline + LPS. Whereas, microbiome sequencing revealed differential abundance in four phyla and 24 genera among the mouse groups. Metabolism analysis demonstrated the presence of 4,320 metabolites in mice, with 43 up-regulated and 19 down-regulated in CC vs. MC animals, as well as 1,046 up-regulated and 428 down-regulated in ML vs. CL animals. It is Concluded that cold stress enhances intestinal damage by disrupting the balance of gut microbiota and metabolites, while our findings contribute in improving management practices of livestock in during cold seasons.

17.
Nat Commun ; 14(1): 1952, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37029105

ABSTRACT

Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem.

18.
Science ; 377(6611): 1192-1198, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36074839

ABSTRACT

The quantitative description of correlated electron materials remains a modern computational challenge. We demonstrate a numerical strategy to simulate correlated materials at the fully ab initio level beyond the solution of effective low-energy models and apply it to gain a detailed microscopic understanding across a family of cuprate superconducting materials in their parent undoped states. We uncover microscopic trends in the electron correlations and reveal the link between the material composition and magnetic energy scales through a many-body picture of excitation processes involving the buffer layers. Our work illustrates a path toward a quantitative and reliable understanding of more complex states of correlated materials at the ab initio many-body level.

19.
J Chem Theory Comput ; 18(2): 851-864, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35084855

ABSTRACT

Density matrix embedding theory (DMET) formally requires the matching of density matrix blocks obtained from high-level and low-level theories, but this is sometimes not achievable in practical calculations. In such a case, the global band gap of the low-level theory vanishes, and this can require additional numerical considerations. We find that both the violation of the exact matching condition and the vanishing low-level gap are related to the assumption that the high-level density matrix blocks are noninteracting pure-state v-representable (NI-PS-V), which assumes that the low-level density matrix is constructed following the Aufbau principle. To relax the NI-PS-V condition, we develop an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

20.
Comput Struct Biotechnol J ; 20: 1716-1725, 2022.
Article in English | MEDLINE | ID: mdl-35495114

ABSTRACT

The gut microbiome is highly linked to inflammatory bowel disease (IBD). A total of 3890 publications related to the two terms from 2000 to 2020 were extracted from the Web of Science Core Collection to study the association from a bibliometric perspective. Publications on this topic have grown rapidly since 2008. The United States and Harvard University are the country and institution with the largest number of publications, respectively. Inflammatory Bowel Diseases is the most productive journal with 211 published articles. The most influential journal in this field is Gut with 13,359 citations. The co-citation analysis of references showed that the IBD-related topics with the highest focus are "gut microbiota," "metagenomics," "bacterial community," "fecal microbiota transplantation," "probiotics," and "colitis-associated colorectal cancer." Keyword cluster and keyword burst analyses showed that "gut microbiota," "metagenomics," and "fecal microbiota transplantation" are currently the most researched topics in the field of IBD. The literature in this field is mainly distributed between alterations of the intestinal microbiota, microbial metabolites, and related host signaling pathways. Probiotic treatment also frequently appears in literature. This bibliometric analysis can guide future research and promote the development of the field of gut microbiome and IBD.

SELECTION OF CITATIONS
SEARCH DETAIL