Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
IUCrdata ; 9(Pt 6): x240612, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974847

ABSTRACT

The crystal structure of the title compound was determined at 120 K. It crystallizes in the triclinic space group P with four independent mol-ecules in the asymmetric unit. In the crystal, each symmetry-unique mol-ecule forms π-π stacks on itself, giving four unique π-π stacking inter-actions. Inter-molecular hydrogen bonding is observed between each pair of independent mol-ecules, where each hy-droxy group can act as a hydrogen-bond donor and acceptor.

2.
ACS Nano ; 18(4): 2958-2971, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38251654

ABSTRACT

Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3-6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level.

3.
ACS Nano ; 18(9): 7148-7160, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38383159

ABSTRACT

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a need to develop analytical tools capable of precisely probing spin information at the single-particle level. In this work, we demonstrate a methodology using negatively charged nitrogen vacancies (NV-) in fluorescent nanodiamond (FND) particles to probe the magnetic switching of a spin crossover (SCO) metal-organic framework (MOF), [Fe(1,6-naphthyridine)2(Ag(CN)2)2] material (1), and a single-molecule photomagnet [X(18-crown-6)(H2O)3]Fe(CN)6·2H2O, where X = Eu and Dy (materials 2a and 2b, respectively), in response to heat, light, and electron beam exposure. We employ correlative light-electron microscopy using transmission electron microscopy (TEM) finder grids to accurately image and sense spin-spin interacting particles down to the single-particle level. We used surface-sensitive optically detected magnetic resonance (ODMR) and magnetic modulation (MM) of FND photoluminescence (PL) to sense spins to a distance of ca. 10-30 nm. We show that ODMR and MM sensing was not sensitive to the temperature-induced SCO of FeII in 1 as formation of paramagnetic FeIII through surface oxidation (detected by X-ray photoelectron spectroscopy) on heating obscured the signal of bulk SCO switching. We found that proximal FNDs could effectively sense the chemical transformations induced by the 200 keV electron beam in 1, namely, AgI → Ag0 and FeII → FeIII. However, transformations induced by the electron beam are irreversible as they substantially disrupt the structure of MOF particles. Finally, we demonstrate NV- sensing of reversible photomagnetic switching, FeIII + (18-crown-6) ⇆ FeII + (18-crown-6)+ •, triggered in 2a and 2b by 405 nm light. The photoredox process of 2a and 2b proved to be the best candidate for room-temperature single-particle magnetic switching utilizing FNDs as a sensor, which could have applications into next-generation quantum technologies.

4.
ACS Nano ; 17(6): 6062-6072, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36916820

ABSTRACT

Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide InxSey by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of InxSey we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of InxSey. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm InxSey, namely InSe or ß-In2Se3, can be prepared. Additionally, in situ AC-TEM heating experiments reveal that encapsulated ß-In2Se3 undergoes a phase change to γ-In2Se3 above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components.

SELECTION OF CITATIONS
SEARCH DETAIL