Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Radiol Med ; 129(3): 380-400, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38319493

ABSTRACT

Cardiac computed tomography angiography (CCTA) is considered the standard non-invasive tool to rule-out obstructive coronary artery disease (CAD). Moreover, several imaging biomarkers have been developed on cardiac-CT imaging to assess global CAD severity and atherosclerotic burden, including coronary calcium scoring, the segment involvement score, segment stenosis score and the Leaman-score. Myocardial perfusion imaging enables the diagnosis of myocardial ischemia and microvascular damage, and the CT-based fractional flow reserve quantification allows to evaluate non-invasively hemodynamic impact of the coronary stenosis. The texture and density of the epicardial and perivascular adipose tissue, the hypodense plaque burden, the radiomic phenotyping of coronary plaques or the fat radiomic profile are novel CT imaging features emerging as biomarkers of inflammation and plaque instability, which may implement the risk stratification strategies. The ability to perform myocardial tissue characterization by extracellular volume fraction and radiomic features appears promising in predicting arrhythmogenic risk and cardiovascular events. New imaging biomarkers are expanding the potential of cardiac CT for phenotyping the individual profile of CAD involvement and opening new frontiers for the practice of more personalized medicine.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Plaque, Atherosclerotic , Humans , Coronary Angiography/methods , Predictive Value of Tests , Coronary Artery Disease/diagnostic imaging , Tomography, X-Ray Computed/methods , Computed Tomography Angiography/methods , Biomarkers , Coronary Vessels
2.
Radiol Med ; 128(4): 445-455, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36877423

ABSTRACT

PURPOSE: One of the major challenges in the management of familial hypercholesterolemia (FH) is the stratification of cardiovascular risk in asymptomatic subjects. Our purpose is to investigate the performance of clinical scoring systems, Montreal-FH-score (MFHS), SAFEHEART risk (SAFEHEART-RE) and FH risk score (FHRS) equations and Dutch Lipid Clinic Network (DLCN) diagnostic score, in predicting extent and severity of CAD at coronary computed tomography angiography (CCTA) in asymptomatic FH. MATERIAL AND METHODS: One-hundred and thirty-nine asymptomatic FH subjects were prospectively enrolled to perform CCTA. MFHS, FHRS, SAFEHEART-RE and DLCN were assessed for each patient. Atherosclerotic burden scores at CCTA (Agatston score [AS], segment stenosis score [SSS]) and CAD-RADS score were calculated and compared to clinical indices. RESULTS: Non-obstructive CAD was found in 109 patients, while 30 patients had a CAD-RADS ≥ 3. Classifying the two groups according to AS, values varied significantly for MFHS (p < 0.001), FHRS (p < 0.001) and SAFEHEART-RE (p = 0.047), while according to SSS only MFHS and FHRS showed significant differences (p < 0.001). MFHS, FHRS and SAFEHEART-RE, but not DLCN, showed significant differences between the two CAD-RADS groups (p < .001). MFHS proved to have the best discriminatory power (AUC = 0.819; 0.703-0.937, p < 0.001) at ROC analysis, followed by FHRS (AUC = 0.795; 0.715-0.875, p < .0001) and SAFEHEART-RE (AUC = .725; .61-.843, p < .001). CONCLUSIONS: Greater values of MFHS, FHRS and SAFEHEART-RE are associated to higher risk of obstructive CAD and might help to select asymptomatic patients that should be referred to CCTA for secondary prevention.


Subject(s)
Coronary Artery Disease , Hyperlipoproteinemia Type II , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/complications , Computed Tomography Angiography , Coronary Angiography/methods , Tomography, X-Ray Computed/methods , Risk Factors , Hyperlipoproteinemia Type II/complications , Hyperlipoproteinemia Type II/diagnostic imaging , Predictive Value of Tests , Risk Assessment
3.
J Cardiovasc Magn Reson ; 23(1): 68, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34107985

ABSTRACT

BACKGROUND: Early detection of myocardial involvement can be relevant in coronavirus disease 2019 (COVID-19) patients to timely target symptomatic treatment and decrease the occurrence of the cardiac sequelae of the infection. The aim of the present study was to assess the clinical value of cardiovascular magnetic resonance (CMR) in characterizing myocardial damage in active COVID-19 patients, through the correlation between qualitative and quantitative imaging biomarkers with clinical and laboratory evidence of myocardial injury. METHODS: In this retrospective observational cohort study, we enrolled 27 patients with diagnosis of active COVID-19 and suspected cardiac involvement, referred to our institution for CMR between March 2020 and January 2021. Clinical and laboratory characteristics, including high sensitivity troponin T (hs-cTnT), and CMR imaging data were obtained. Relationships between CMR parameters, clinical and laboratory findings were explored. Comparisons were made with age-, sex- and risk factor-matched control group of 27 individuals, including healthy controls and patients without other signs or history of myocardial disease, who underwent CMR examination between January 2020 and January 2021. RESULTS: The median (IQR) time interval between COVID-19 diagnosis and CMR examination was 20 (13.5-31.5) days. Hs-cTnT values were collected within 24 h prior to CMR and resulted abnormally increased in 18 patients (66.6%). A total of 20 cases (74%) presented tissue signal abnormalities, including increased myocardial native T1 (n = 11), myocardial T2 (n = 14) and extracellular volume fraction (ECV) (n = 10), late gadolinium enhancement (LGE) (n = 12) or pericardial enhancement (n = 2). A CMR diagnosis of myocarditis was established in 9 (33.3%), pericarditis in 2 (7.4%) and myocardial infarction with non-obstructive coronary arteries in 3 (11.11%) patients. T2 mapping values showed a moderate positive linear correlation with Hs-cTnT (r = 0.58; p = 0.002). A high degree positive linear correlation between ECV and Hs-cTnT was also found (r 0.77; p < 0.001). CONCLUSIONS: CMR allows in vivo recognition and characterization of myocardial damage in a cohort of selected COVID-19 individuals by means of a multiparametric scanning protocol including conventional imaging and T1-T2 mapping sequences. Abnormal T2 mapping was the most commonly abnormality observed in our cohort and positively correlated with hs-cTnT values, reflecting the predominant edematous changes characterizing the active phase of disease.


Subject(s)
COVID-19/complications , Cardiomyopathies/complications , Cardiomyopathies/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Age Factors , Cohort Studies , Heart/diagnostic imaging , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Sex Factors
4.
Radiol Med ; 126(12): 1518-1531, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34420142

ABSTRACT

Over the last decades, interest toward athlete's heart has progressively increased, leading to improve the knowledge on exercise-induced heart modifications. Sport may act as a trigger for life-threatening arrhythmias in patients with structural or electrical abnormalities, hence requiring to improve the diagnostic capability to differentiate physiological from pathological remodeling. Pathological alterations are often subtle at the initial stages; therefore, the challenge is to promptly identify athletes at risk of sudden cardiac death during the pre-participation screening protocols. Advanced imaging modalities such as coronary computed tomography angiography (CCTA) and cardiac magnetic resonance (CMR) can non-invasively depict coronary vessels and provide a deep morpho-functional and structural characterization of the myocardium, in order to rule out pathological life threatening alterations, which may overlap with athletes' heart remodeling. The purpose of the present narrative review is to provide an overview of most frequent diagnostic challenges, defining the boundaries between athlete's heart remodeling and pathological structural alteration with a focus on the role and importance of CCTA and CMR.


Subject(s)
Adaptation, Physiological/physiology , Athletes , Cardiomegaly, Exercise-Induced/physiology , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/physiopathology , Computed Tomography Angiography/methods , Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Humans
5.
Radiol Med ; 125(11): 1072-1086, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32970272

ABSTRACT

The restrictive cardiomyopathies constitute a heterogeneous group of myocardial diseases with a different pathogenesis and overlapping clinical presentations. Diagnosing them frequently poses a challenge. Echocardiography, electrocardiograms and laboratory tests may show non-specific changes. In this context, cardiac magnetic resonance (CMR) may play a crucial role in defining the diagnosis and guiding treatments, by offering a robust myocardial characterization based on the inherent magnetic properties of abnormal tissues, thus limiting the use of endomyocardial biopsy. In this review article, we explore the role of CMR in the assessment of a wide range of myocardial diseases causing restrictive patterns, from iron overload to cardiac amyloidosis, endomyocardial fibrosis or radiation-induced heart disease. Here, we emphasize the incremental value of novel relaxometric techniques such as T1 and T2 mapping, which may recognize different storage diseases based on the intrinsic magnetic properties of the accumulating metabolites, with or without the use of gadolinium-based contrast agents. We illustrate the importance of these CMR techniques and their great support when contrast media administration is contraindicated. Finally, we describe the useful role of cardiac computed tomography for diagnosis and management of restrictive cardiomyopathies when CMR is contraindicated.


Subject(s)
Cardiac Imaging Techniques/methods , Cardiomyopathy, Restrictive/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Aged, 80 and over , Amyloidosis/diagnostic imaging , Cardiomyopathies/diagnostic imaging , Cardiomyopathy, Restrictive/classification , Endomyocardial Fibrosis/diagnostic imaging , Female , Humans , Iron Overload/diagnostic imaging , Lysosomal Storage Diseases/diagnostic imaging , Male , Middle Aged , Radiation Injuries/complications , Radiation Injuries/diagnostic imaging , Sarcoidosis/diagnostic imaging
6.
Acad Radiol ; 31(1): 212-220, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37532596

ABSTRACT

RATIONALE AND OBJECTIVES: To determine the optimal virtual monoenergetic image (VMI) energy level and the potential of contrast-media (CM) reduction for coronary computed tomography angiography (CCTA) with photon-counting detector CT (PCD-CT). MATERIALS AND METHODS: In this institutional review board-approved study, patients who underwent CCTA with dual-source PCD-CT with an identical scan protocol and radiation dose were included. In group 1, CCTA was performed with our standard CM protocol (volume: 72-85.2 mL, 370 mg iodine/mL). VMIs were reconstructed from 40 to 60 keV at 5 keV increments. Objective image quality (IQ) (vascular attenuation, image noise, and contrast-to-noise ratio [CNR]) was measured. Two blinded, independent readers rated subjective IQ (overall IQ, subjective image contrast, and subjective noise using a five-point discrete visual scale). Results of group 1 served to determine the best VMI level for CCTA. In group 2, CM volume was reduced by 20%, and in group 3 by another 20%. RESULTS: A total of 100 patients were enrolled (45 females, mean age 54 ± 13 years). Inter-reader agreement was good-to-excellent for all comparisons (κ > 0.6). In group 1, the best VMI level regarding objective and subjective IQ was 45 keV, which was selected as the reference for groups 2 and 3. For group 2, mean vascular attenuation was 890 Hounsfield units (HU) and mean CNR was 26, with no differences compared to group 1, 45 keV for both objective and subjective IQ. For group 3, mean vascular attenuation was 676 HU and mean CNR was 21, and all patients were rated as diagnostic except one (severe motion artifacts). CONCLUSION: Increased IQ of PCD-CT can be used for considerable CM volume reduction while still maintaining a diagnostic IQ of CCTA.


Subject(s)
Computed Tomography Angiography , Radiography, Dual-Energy Scanned Projection , Female , Humans , Adult , Middle Aged , Aged , Computed Tomography Angiography/methods , Contrast Media , Signal-To-Noise Ratio , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Retrospective Studies
7.
Eur Radiol Exp ; 8(1): 34, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38413432

ABSTRACT

BACKGROUND: We investigated the differences in impairment of left ventricle (LV) and left atrium (LA) contractile dysfunction between subacute and convalescent takotsubo syndrome (TTS), using myocardial strain analysis by cardiac magnetic resonance (CMR) feature-tracking technique. METHODS: We retrospectively selected 50 patients with TTS clinical-radiological diagnosis who underwent CMR within 30 days since symptoms onset: 19 studied during the early subacute phase (sTTS, ≤ 7 days) and 31 during the convalescence (cTTS, 8-30 days). We measured the following: LV global longitudinal, circumferential, and radial strain (lvGLS, lvGCS, lvGRS) and strain rate (SR) and LA reservoir (laS_r), conduit (laS_cd), and booster pump strain (laS_bp) and strain rate (laSR_r, laSR_cd, laSR_bp). Patients were compared with 30 age- and sex-matched controls. RESULTS: All patients were women (mean age 63 years). TTS patients showed altered LV- and LA-strain features, compared to controls. sTTS was associated with increased laS_bp (12.7% versus 9.8%) and reduced lvEF (47.4% versus 54.8%), lvGLS (-12.2% versus 14.6%), and laS_cd (7.0% versus 9.5%) compared to cTTS (p ≤ 0.029). The interval between symptoms onset and CMR was correlated with laS_bp (r = -0.49) and lvGLS (r = 0.47) (p = 0.001 for both). At receiver operating characteristics analysis, laS_bp was the best discriminator between sTTS and cTTS (area under the curve [AUC] 0.815), followed by lvGLS (AUC 0.670). CONCLUSIONS: LA dysfunction persists during the subacute and convalescence of TTS. laS_bp increases in subacute phase with progressive decrease during convalescence, representing a compensatory mechanism of LV dysfunction and thus a useful index of functional recovery. RELEVANCE STATEMENT: Atrial strain has the potential to enhance the delineation of cardiac injury and functional impairment in TTS patients, assisting in the identification of individuals at higher risk and facilitating the implementation of more targeted and personalized medical therapies. KEY POINTS: • In TTS, after ventricular recovery, atrial dysfunction persists assessable with CMR feature tracking. • Quantitative assessment of atrial strain discriminates atrial functions: reservoir, conduit, and booster pump. • Atrial booster pump changes after acute TTS, regardless of ventricular function. • Atrial strain may serve as a temporal marker in TTS.


Subject(s)
Heart Ventricles , Takotsubo Cardiomyopathy , Humans , Female , Middle Aged , Male , Takotsubo Cardiomyopathy/diagnostic imaging , Takotsubo Cardiomyopathy/pathology , Retrospective Studies , Convalescence , Magnetic Resonance Imaging, Cine/methods , Heart Atria/diagnostic imaging , Heart Atria/pathology
8.
Br J Radiol ; 96(1151): 20230028, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37191058

ABSTRACT

Several interventional treatment options exist in patients with atrial and ventricular arrhythmia. Cardiac CT is routinely performed prior to occlusion of the left atrial appendage, pulmonary vein isolation, and cardiac device implantation. Besides the evaluation of coronary artery disease, cardiac CT provides isotropic, high-resolution CT images of the cardiac anatomy with the possibility of multiplanar reformations and three-dimensional reconstructions which are helpful to guide interventional treatment. In addition, cardiac CT is increasingly used to rapidly evaluate periprocedural complications and for the routine post-procedural imaging surveillance in patients after interventions. This review article will discuss current applications of pre- and post-interventional CT imaging in patients with arrhythmia.


Subject(s)
Atrial Fibrillation , Coronary Artery Disease , Humans , Tomography, X-Ray Computed/methods , Coronary Artery Disease/etiology , Treatment Outcome , Cardiac Catheterization/adverse effects
9.
Insights Imaging ; 14(1): 156, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749293

ABSTRACT

Non-invasive quantification of the extracellular volume (ECV) is a method for the evaluation of focal and diffuse myocardial fibrosis, potentially obviating the need for invasive endomyocardial biopsy. While ECV quantification with cardiac magnetic resonance imaging (ECVMRI) is already an established method, ECV quantification with CT (ECVCT) is an attractive alternative to ECVMRI, similarly using the properties of extracellular contrast media for ECV calculation. In contrast to ECVMRI, ECVCT provides a more widely available, cheaper and faster tool for ECV quantification and allows for ECV calculation also in patients with contraindications for MRI. Many studies have already shown a high correlation between ECVCT and ECVMRI and accumulating evidence suggests a prognostic value of ECVCT quantification in various cardiovascular diseases. Adding a late enhancement scan (for dual energy acquisitions) or a non-enhanced and late enhancement scan (for single-energy acquisitions) to a conventional coronary CT angiography scan improves risk stratification, requiring only minor adaptations of the contrast media and data acquisition protocols and adding only little radiation dose to the entire scan.Critical relevance statementThis article summarizes the technical principles of myocardial extracellular volume (ECV) quantification with CT, reviews the literature comparing ECVCT with ECVMRI and histopathology, and reviews the prognostic value of myocardial ECV quantification for various cardiovascular disease.Key points• Non-invasive quantification of myocardial fibrosis can be performed with CT.• Myocardial ECV quantification with CT is an alternative in patients non-eligible for MRI.• Myocardial ECV quantification with CT strongly correlates with ECV quantification using MRI.• Myocardial ECV quantification provides incremental prognostic information for various pathologies affecting the heart (e.g., cardiac amyloidosis).

10.
J Clin Med ; 12(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36836032

ABSTRACT

Papillary muscle (PPM) involvement in myocardial infarction (MI) increases the risk of secondary mitral valve regurgitation or PPM rupture and may be diagnosed using late gadolinium enhancement (LGE) imaging. The native T1-mapping (nT1) technique and PPM longitudinal strain (PPM-ls) have been used to identify PPM infarction (iPPM) without the use of the contrast agent. This study aimed to assess the diagnostic performance of nT1 and PPM-ls in the identification of iPPM. Forty-six patients, who performed CMR within 14-30 days after MI, were retrospectively enrolled: sixteen showed signs of iPPM on LGE images. nT1 values were measured within the infarcted area (IA), remote myocardium (RM), blood pool (BP), and anterolateral and posteromedial PPMs and compared using ANOVA. PPM-ls values have been assessed on cineMR images as the percentage of shortening between end-diastolic and end-systolic phases. Higher nT1 values and lower PPM-ls were found in infarcted compared to non-infarcted PPMs (nT1: 1219.3 ± 102.5 ms vs. 1052.2 ± 80.5 ms and 17.6 ± 6.3% vs. 21.6 ± 4.3%; p-value < 0.001 for both), with no significant differences between the nT1 of infarcted PPMs and IA and between the non-infarcted PPMs and RM. ROC analysis demonstrated an excellent discriminatory power for nT1 in detecting the iPPM (AUC = 0.874; 95% CI: 0.784-0.963; p < 0.001). nT1 and PPM-ls are valid tools in assessing iPPM with the advantage of avoiding contrast media administration.

11.
Invest Radiol ; 58(11): 767-774, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37222522

ABSTRACT

PURPOSE: The aim of this study was to assess the effect of temporal resolution on subjective and objective image quality of coronary computed tomography angiography (CCTA) in the ultra-high-resolution (UHR) mode with dual-source photon-counting detector (PCD) CT. MATERIALS AND METHODS: This retrospective, institutional review board-approved study evaluated 30 patients (9 women; mean age, 80 ± 10 years) undergoing UHR CCTA with a clinical dual-source PCD-CT scanner. Images were acquired with a tube voltage of 120 kV and using a collimation of 120 × 0.2 mm. Gantry rotation time was 0.25 seconds. Each scan was reconstructed using both single-source and dual-source data resulting in an image temporal resolution of 125 milliseconds and 66 milliseconds, respectively. The average heart rate and the heart rate variability were recorded. Images were reconstructed with a slice thickness of 0.2 mm, quantum iterative reconstruction strength level 4, and using the Bv64 and Bv72 kernel for patients without and with coronary stents, respectively. For subjective image quality, 2 experienced readers rated motion artifacts and vessel delineation, or in-stent lumen visualization using 5-point discrete visual scales. For objective image quality, signal-to-noise ratio, contrast-to-noise ratio, stent blooming artifacts, and vessel and stent sharpness were quantified. RESULTS: Fifteen patients had coronary stents, and 15 patients had no coronary stents. The mean heart rate and heart rate variability during data acquisition were 72 ± 10 beats per minute and 5 ± 6 beats per minute, respectively. Subjective image quality in the right coronary artery, left anterior descending, and circumflex artery was significantly superior in 66 milliseconds reconstructions compared with 125 milliseconds reconstructions for both readers (all P 's < 0.01; interreader agreement, Krippendorff α = 0.84-1.00). Subjective image quality deteriorated significantly at higher heart rates for 125 milliseconds (ρ = 0.21, P < 0.05) but not for 66 milliseconds reconstructions (ρ = 0.11, P = 0.22). No association was found between heart rate variability and image quality for both 125 milliseconds (ρ = 0.09, P = 0.33) and 66 milliseconds reconstructions (ρ = 0.13, P = 0.17), respectively. Signal-to-noise ratio and contrast-to-noise ratio were similar between 66 milliseconds and 125 milliseconds reconstructions (both P 's > 0.05), respectively. Stent blooming artifacts were significantly lower on 66 milliseconds than on 125 milliseconds reconstructions (46.7% ± 10% vs 52.9% ± 8.9%, P < 0.001). Higher sharpness was found in 66 milliseconds than in 125 milliseconds reconstructions both in native coronary arteries (left anterior descending artery: 1031 ± 265 ∆HU/mm vs 819 ± 253 ∆HU/mm, P < 0.01; right coronary artery: 884 ± 352 ∆HU/mm vs 654 ± 377 ∆HU/mm, P < 0.001) and stents (5318 ± 3874 ∆HU/mm vs 4267 ± 3521 ∆HU/mm, P < 0.001). CONCLUSIONS: Coronary angiography with PCD-CT in the UHR mode profits considerably from a high temporal resolution, resulting in less motion artifacts, superior vessel delineation and in-stent lumen visualization, less stent blooming artifacts, and superior vessel and stent sharpness.


Subject(s)
Computed Tomography Angiography , Tomography, X-Ray Computed , Humans , Female , Aged , Aged, 80 and over , Coronary Angiography/methods , Retrospective Studies , Tomography, X-Ray Computed/methods , Computed Tomography Angiography/methods , Stents , Phantoms, Imaging
12.
Int J Cardiovasc Imaging ; 39(5): 1031-1043, 2023 May.
Article in English | MEDLINE | ID: mdl-36913155

ABSTRACT

To evaluate clinical and cardiac magnetic resonance (CMR) short-term follow-up (FU) in patients with vaccine-associated myocarditis, pericarditis or myo-pericarditis (VAMP) following COVID-19 vaccination. We retrospectively analyzed 44 patients (2 women, mean age: 31.7 ± 15.1 years) with clinical and CMR manifestations of VAMP, recruited from 13 large tertiary national centers. Inclusion criteria were troponin raise, interval between the last vaccination dose and onset of symptoms < 25 days and symptoms-to-CMR < 20 days. 29/44 patients underwent a short-term FU-CMR with a median time of 3.3 months. Ventricular volumes and CMR findings of cardiac injury were collected in all exams. Mean interval between the last vaccination dose and the onset of symptoms was 6.2 ± 5.6 days. 30/44 patients received a vaccination with Comirnaty, 12/44 with Spikevax, 1/44 with Vaxzevria and 1/44 with Janssen (18 after the first dose of vaccine, 20 after the second and 6 after the "booster" dose). Chest pain was the most frequent symptom (41/44), followed by fever (29/44), myalgia (17/44), dyspnea (13/44) and palpitations (11/44). At baseline, left ventricular ejection fraction (LV-EF) was reduced in 7 patients; wall motion abnormalities have been detected in 10. Myocardial edema was found in 35 (79.5%) and LGE in 40 (90.9%) patients. Clinical FU revealed symptoms persistence in 8/44 patients. At FU-CMR, LV-EF was reduced only in 2 patients, myocardial edema was present in 8/29 patients and LGE in 26/29. VAMPs appear to have a mild clinical presentation, with self-limiting course and resolution of CMR signs of active inflammation at short-term follow-up in most of the cases.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Myocarditis/etiology , Myocarditis/complications , COVID-19 Vaccines/adverse effects , Stroke Volume , Retrospective Studies , Ventricular Function, Left , Magnetic Resonance Imaging, Cine , COVID-19/complications , Predictive Value of Tests , Magnetic Resonance Imaging , Pericarditis/etiology , Pericarditis/complications
13.
Cardiovasc Pathol ; 56: 107391, 2022.
Article in English | MEDLINE | ID: mdl-34601072

ABSTRACT

Myocardial fibrosis is defined as an increased amount of collagen in the myocardium relative to cardiac myocytes. Two main morphologic patterns are recognized: 1) replacement fibrosis, which occurs in response to myocyte necrosis (myocardial scarring); and 2) interstitial fibrosis, which is usually a diffuse process and has been shown to be reversible and treatable. Replacement and interstitial fibrosis often coexist and are a constant feature of pathologic cardiac remodeling. In the last twenty years, there has been significant interest in developing objective non-invasive methods to identify and quantitatively assess myocardial fibrosis in vivo, both for diagnostic purposes and to improve stratification of patients. The present Review focuses on the morphologic patterns of myocardial fibrosis observed either at autopsy and heart transplant, or in vivo by non-invasive imaging techniques. Main aim is to provide clues for the differential diagnosis, with emphasis on entities whose diagnosis may be challenging. An update on the diagnostic and prognostic role of imaging, along with recent data on available biomarkers, is also proposed.


Subject(s)
Cardiomyopathies , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/pathology , Fibrosis , Humans , Prognosis
14.
J Clin Med ; 11(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36556045

ABSTRACT

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare immune-mediated vasculitis associated with anti-neutrophil cytoplasmic antibodies (ANCAs). Having systemic and possibly severe involvement, a prompt recognition of its clinical features is crucial to achieve favorable patient outcomes. Although cutaneous manifestations represent key elements, these still remain poorly characterized. We report a case of ANCA-positive EGPA presenting with palpable purpura, livedo reticularis, and pemphigoid-like lesions that was successfully treated with glucocorticoid therapy and rituximab. This report portrays the evolution of cutaneous lesions in ANCA-positive EGPA and demonstrates how dermatologic signs may represent indicators of active disease, allowing for timely diagnosis and for the monitoring of disease activity during treatment.

15.
Int J Cardiovasc Imaging ; 38(1): 211-221, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34448067

ABSTRACT

To assess the impact of regurgitant jet direction on left ventricular function and intraventricular hemodynamics in asymptomatic patients with bicuspid aortic valve (BAV) and mild aortic valve regurgitation (AR), using cardiac magnetic resonance (CMR) feature tracking and 4D flow imaging. Fifty BAV individuals were retrospectively selected: 15 with mild AR and posterior regurgitation jet (Group-PJ), 15 with regurgitant jet in other directions (Group-nPJ) and 20 with no regurgitation (Controls). CMR protocol included cine steady state free precession (SSFP) sequences and 4D Flow imaging covering the entire left ventricle (LV) cavity and the aortic root. Cine-SSFP images were analyzed to assess LV volumes, longitudinal and circumferential myocardial strain. Circumferential and longitudinal peak diastolic strain rate (PDSR) and peak diastolic velocity (PDV) were reduced in group PJ if compared to group nPJ and control group (PDSR = 1.10 ± 0.2 1/s vs. 1.34 ± 0.5 1/s vs. 1.53 ± 0.3 1/s, p:0.001 and 0.68 ± 0.2 1/s vs. 1.17 ± 0.2 1/s vs. 1.05 ± 0.4 1/s ; p < 0.001, PDV = - 101.6 ± 28.1 deg/s vs. - 201.4 ± 85.9 deg/s vs. - 221.6 ± 67.1 deg/s; p < 0.001 and - 28.1 ± 8 mm/s vs. - 38.9 ± 11.1 mm/s vs. - 43.6 ± 14.3 mm/s, p < 0.001, respectively), whereas no differences have been found in systolic strain values. 4D Flow images (available only in 9 patients) showed deformation of diastolic transmitral streamlines direction in group PJ compared to other groups. In BAV patients with mild AR, the posterior direction of the regurgitant jet may hamper the complete mitral valve opening, disturbing transmitral flow and slowing the LV diastolic filling.


Subject(s)
Aortic Valve Insufficiency , Bicuspid Aortic Valve Disease , Mitral Valve Insufficiency , Aortic Valve/diagnostic imaging , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/etiology , Humans , Magnetic Resonance Spectroscopy , Mitral Valve/diagnostic imaging , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/etiology , Predictive Value of Tests , Retrospective Studies
16.
Insights Imaging ; 12(1): 28, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33625637

ABSTRACT

Clinical manifestations of COVID-19 patients are dominated by respiratory symptoms, but cardiac complications are commonly observed and associated with increased morbidity and mortality. Underlying pathological mechanisms of cardiac injury are still not entirely elucidated, likely depending on a combination of direct viral damage with an uncontrolled immune activation. Cardiac involvement in these patients ranges from a subtle myocardial injury to cardiogenic shock. Advanced cardiac imaging plays a key role in discriminating the broad spectrum of differential diagnoses. Present article aims to review the value of advanced multimodality imaging in patients with suspected SARS-CoV-2-related cardiovascular involvement and its essential role in risk stratification and tailored treatment strategies. Based on our experience, we also sought to suggest possible diagnostic algorithms for the rationale utilization of advanced imaging tools, such as cardiac CT and CMR, avoiding unnecessary examinations and diagnostic delays.

17.
Eur Heart J Cardiovasc Imaging ; 22(7): 728-731, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33325495

ABSTRACT

We proposed a combined cardiothoracic-MRI (CaTh-MRI) protocol for the comprehensive assessment of cardiovascular structures, lung parenchyma, and pulmonary arterial tree, in COVID-19 patients with progressive worsening of clinical conditions and/or suspicion of acute-onset myocardial inflammation. A 25-minutes fast protocol was also conceived for unstable or uncooperative patients by restricting the number of sequences to those necessary to rule out myocardial and to assess pulmonary involvement. In patients requiring CMR characterization of myocardial damage, the addition of lung and thoracic vessel evaluation is of clinical benefit at a minimal time expense.


Subject(s)
COVID-19 , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Pulmonary Artery/diagnostic imaging , SARS-CoV-2
18.
Int J Cardiovasc Imaging ; 37(4): 1395-1404, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33190198

ABSTRACT

The purpose of our study was to compare diagnostic performance of old and new Lake Louise Criteria (oLLC and nLLC) among different clinical presentations: infarct-like (IL), cardiomyopathic (CM) and arrhythmic (AR). 102 patients with clinical suspicion of acute myocarditis underwent cardiac magnetic resonance (CMR) on a 1.5 T scanner. Protocol included cine-SSFP, T2-weighted STIR, T2 mapping, early and late gadolinium enhancement and T1 mapping acquired before and after gadolinium administration. The degree of agreement has been calculated with Cohen's K test. 42 patients also underwent endomyocardial biopsy (EMB). IL onset was present in 54/102 patients, CM in 28/102 and AR in 20/102. nLLC were positive in 58.3% of the patients, while oLLC in 37.9%, k = 0.57 (IC: 0.428-0.713). The degree of agreement between nLLC and oLLC was 0.49 (IC: 0.111-0.876) for AR onset (nLLC positive in 35% vs oLLC in 15%), 0.25 (IC: 0.035-0.459) for CM pattern (nLLC positive in 60.7% vs oLLC 17.9%) and 0.73 (IC: 0.543-0.912) for IL presentation (nLLC positive in 66.7% vs oLLC in 57.4%). Diagnostic accuracy was 75% for both nLLC and oLLC among IL onset, and 41.6% for oLLC vs 66.7% for nLLC, as regards CM clinical presentation. nLLC have improved diagnostic performance of CMR for the diagnosis of acute myocarditis, in particular for atypical clinical presentation.


Subject(s)
Decision Support Techniques , Magnetic Resonance Imaging, Cine , Myocarditis/diagnostic imaging , Acute Disease , Adult , Contrast Media , Female , Heterocyclic Compounds , Humans , Male , Middle Aged , Myocarditis/etiology , Organometallic Compounds , Predictive Value of Tests , Prognosis , Reproducibility of Results , Retrospective Studies
19.
Int J Cardiol ; 339: 235-242, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34224766

ABSTRACT

BACKGROUND: Cardiovascular disease (CVD) can occur in COVID-19 and has impact on clinical course. Data on CVD prevalence in hospitalized COVID-19 patients and sequelae in survivors is limited. Aim of this prospective study carried out on consecutive unselected COVID-19 population, was to assess: 1) CVD occurrence among hospitalized COVID-19 patients, 2) persistence or new onset of CVD at one-month and one-year follow-up. METHODS: Over 30 days n = 152 COVID-19 patients underwent cardiovascular evaluation. Standard electrocardiogram (ECG), Troponin and echocardiography were integrated by further tests when indicated. Medical history, arterial blood gas, blood tests, chest computed tomography and treatment were recorded. CVD was defined as the occurrence of a new condition during the hospitalization for COVID-19. Survivors attended a one-month follow-up visit and a one-year telephone follow-up. RESULTS: Forty-two patients (28%) experienced a wide spectrum of CVD with acute myocarditis being the most frequent. Death occurred in 32 patients (21%) and more frequently in patients who developed CVD (p = 0.032). After adjustment for confounders, CVD was independently associated with death occurrence. At one-month follow-up visit, 7 patients (9%) presented persistent or delayed CVD. At one-year telephone follow-up, 57 patients (48%) reported persistent symptoms. CONCLUSION: Cardiovascular evaluation in COVID-19 patients is crucial since the occurrence of CVD in hospitalized COVID-19 patients is common (28%), requires specific treatment and increases the risk of in-hospital mortality. Persistence or delayed presentation of CVD at 1-month (9%) and persistent symptoms at 1-year follow-up (48%) suggest the need for monitoring COVID-19 survivors.


Subject(s)
COVID-19 , Myocarditis , Follow-Up Studies , Hospitals , Humans , Prospective Studies , SARS-CoV-2
20.
Cardiovasc Diagn Ther ; 10(4): 1068-1089, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32968661

ABSTRACT

Four-dimensional (4D) flow MRI has emerged as a powerful non-invasive technique in cardiovascular imaging, enabling to analyse in vivo complex flow dynamics models by quantifying flow parameters and derived features. Deep knowledge of aortic flow dynamics is fundamental to better understand how abnormal flow patterns may promote or worsen vascular diseases. In the perspective of an increasingly personalized and preventive medicine, growing interest is focused on identifying those quantitative functional features which are early predictive markers of pathological evolution. The thoracic aorta and its spectrum of diseases, as the first area of application and development of 4D flow MRI and supported by an extensive experimental validation, represents the ideal model to introduce this technique into daily clinical practice. The purpose of this review is to describe the impact of 4D flow MRI in the assessment of the thoracic aorta and its most common affecting diseases, providing an overview of the actual clinical applications and describing the potential role of derived advanced hemodynamic measures in tailoring follow-up and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL