Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nat Rev Mol Cell Biol ; 16(2): 110-23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25560970

ABSTRACT

Retinoic acid (RA) signalling has a central role during vertebrate development. RA synthesized in specific locations regulates transcription by interacting with nuclear RA receptors (RARs) bound to RA response elements (RAREs) near target genes. RA was first implicated in signalling on the basis of its teratogenic effects on limb development. Genetic studies later revealed that endogenous RA promotes forelimb initiation by repressing fibroblast growth factor 8 (Fgf8). Insights into RA function in the limb serve as a paradigm for understanding how RA regulates other developmental processes. In vivo studies have identified RAREs that control repression of Fgf8 during body axis extension or activation of homeobox (Hox) genes and other key regulators during neuronal differentiation and organogenesis.


Subject(s)
Extremities/growth & development , Signal Transduction/genetics , Tretinoin/metabolism , Animals , Body Patterning/genetics , Fibroblast Growth Factor 8/genetics , Fibroblast Growth Factor 8/metabolism , Gene Expression Regulation, Developmental/genetics , Humans , Vertebrates/genetics , Vertebrates/growth & development , Vertebrates/metabolism
2.
Genes Dev ; 31(13): 1325-1338, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28794185

ABSTRACT

Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1-4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications.


Subject(s)
Cell Lineage/genetics , Heart/embryology , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Organogenesis/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Cell Line , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryonic Stem Cells/cytology , Embryonic Stem Cells/physiology , Gene Editing , Gene Expression Regulation, Developmental/genetics , Heart Defects, Congenital/genetics , Humans , Mesoderm/cytology , Mesoderm/physiology , Mice , Mutation , Seeds , Xenopus laevis/embryology
3.
Neurobiol Dis ; 190: 106363, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37996040

ABSTRACT

Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is thought to occur when the cellular prion protein (PrPC) spontaneously misfolds and assembles into prion fibrils, culminating in fatal neurodegeneration. In a genome-wide association study of sCJD, we recently identified risk variants in and around the gene STX6, with evidence to suggest a causal increase of STX6 expression in disease-relevant brain regions. STX6 encodes syntaxin-6, a SNARE protein primarily involved in early endosome to trans-Golgi network retrograde transport. Here we developed and characterised a mouse model with genetic depletion of Stx6 and investigated a causal role of Stx6 expression in mouse prion disease through a classical prion transmission study, assessing the impact of homozygous and heterozygous syntaxin-6 knockout on disease incubation periods and prion-related neuropathology. Following inoculation with RML prions, incubation periods in Stx6-/- and Stx6+/- mice differed by 12 days relative to wildtype. Similarly, in Stx6-/- mice, disease incubation periods following inoculation with ME7 prions also differed by 12 days. Histopathological analysis revealed a modest increase in astrogliosis in ME7-inoculated Stx6-/- animals and a variable effect of Stx6 expression on microglia activation, however no differences in neuronal loss, spongiform change or PrP deposition were observed at endpoint. Importantly, Stx6-/- mice are viable and fertile with no gross impairments on a range of neurological, biochemical, histological and skeletal structure tests. Our results provide some support for a pathological role of Stx6 expression in prion disease, which warrants further investigation in the context of prion disease but also other neurodegenerative diseases considering syntaxin-6 appears to have pleiotropic risk effects in progressive supranuclear palsy and Alzheimer's disease.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Mice , Humans , Animals , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Prions/genetics , Prions/metabolism , Genome-Wide Association Study , Mice, Transgenic , Brain/metabolism , Prion Diseases/genetics , Prion Diseases/pathology , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism
4.
Neurobiol Dis ; 193: 106437, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367882

ABSTRACT

TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , TDP-43 Proteinopathies , Animals , Child, Preschool , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , Cognition , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/pathology
5.
Methods ; 191: 15-22, 2021 07.
Article in English | MEDLINE | ID: mdl-32721467

ABSTRACT

Aberrant microsatellite repeat-expansions at specific loci within the human genome cause several distinct, heritable, and predominantly neurological, disorders. Creating models for these diseases poses a challenge, due to the instability of such repeats in bacterial vectors, especially with large repeat expansions. Designing constructs for more precise genome engineering projects, such as engineering knock-in mice, proves a greater challenge still, since these unstable repeats require numerous cloning steps in order to introduce homology arms or selection cassettes. Here, we report our efforts to clone a large hexanucleotide repeat in the C9orf72 gene, originating from within a BAC construct, derived from a C9orf72-ALS patient. We provide detailed methods for efficient repeat sizing and growth conditions in bacteria to facilitate repeat retention during growth and sub-culturing. We report that sub-cloning into a linear vector dramatically improves stability, but is dependent on the relative orientation of DNA replication through the repeat, consistent with previous studies. We envisage the findings presented here provide a relatively straightforward route to maintaining large-range microsatellite repeat-expansions, for efficient cloning into vectors.


Subject(s)
DNA Repeat Expansion , Amyotrophic Lateral Sclerosis/genetics , Animals , C9orf72 Protein/genetics , Cloning, Molecular , Gene Targeting , Humans , Mice
6.
Mol Cell ; 53(6): 1005-19, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24530304

ABSTRACT

Here, we generated a genome-scale shRNA library targeting long intergenic noncoding RNAs (lincRNAs) in the mouse. We performed an unbiased loss-of-function study in mouse embryonic stem cells (mESCs) and identified 20 lincRNAs involved in the maintenance of pluripotency. Among these, TUNA (Tcl1 Upstream Neuron-Associated lincRNA, or megamind) was required for pluripotency and formed a complex with three RNA-binding proteins (RBPs). The TUNA-RBP complex was detected at the promoters of Nanog, Sox2, and Fgf4, and knockdown of TUNA or the individual RBPs inhibited neural differentiation of mESCs. TUNA showed striking evolutionary conservation of both sequence- and CNS-restricted expression in vertebrates. Accordingly, knockdown of tuna in zebrafish caused impaired locomotor function, and TUNA expression in the brains of Huntington's disease patients was significantly associated with disease grade. Our results suggest that the lincRNA TUNA plays a vital role in pluripotency and neural differentiation of ESCs and is associated with neurological function of adult vertebrates.


Subject(s)
Gene Expression Regulation, Developmental , Huntington Disease/genetics , Neurons/metabolism , Pluripotent Stem Cells/metabolism , RNA, Long Noncoding/genetics , Zebrafish/genetics , Amino Acid Sequence , Animals , Biological Evolution , Cell Differentiation , Conserved Sequence , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblast Growth Factor 4/genetics , Fibroblast Growth Factor 4/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Molecular Sequence Data , Motor Activity , Nanog Homeobox Protein , Neurons/cytology , Pluripotent Stem Cells/cytology , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Sequence Homology, Amino Acid , Severity of Illness Index , Signal Transduction , Zebrafish/growth & development , Zebrafish/metabolism
7.
Mamm Genome ; 32(2): 94-103, 2021 04.
Article in English | MEDLINE | ID: mdl-33713180

ABSTRACT

The small EDRK-rich factor 2 (SERF2) is a highly conserved protein that modifies amyloid fibre assembly in vitro and promotes protein misfolding. However, the role of SERF2 in regulating age-related proteotoxicity remains largely unexplored due to a lack of in vivo models. Here, we report the generation of Serf2 knockout mice using an ES cell targeting approach, with Serf2 knockout alleles being bred onto different defined genetic backgrounds. We highlight phenotyping data from heterozygous Serf2+/- mice, including unexpected male-specific phenotypes in startle response and pre-pulse inhibition. We report embryonic lethality in Serf2-/- null animals when bred onto a C57BL/6 N background. However, homozygous null animals were viable on a mixed genetic background and, remarkably, developed without obvious abnormalities. The Serf2 knockout mice provide a powerful tool to further investigate the role of SERF2 protein in previously unexplored pathophysiological pathways in the context of a whole organism.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Intracellular Signaling Peptides and Proteins/genetics , Phenotype , Age Factors , Alleles , Alternative Splicing , Animals , Cell Line , Disease Models, Animal , Embryonic Stem Cells/metabolism , Female , Gene Expression Regulation , Genetic Association Studies/methods , Genetic Background , Genetic Loci , Genotype , Male , Mice , Mice, Knockout , Organ Specificity , X-Ray Microtomography
8.
Genes Dev ; 26(23): 2567-79, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23152446

ABSTRACT

Tight control over the segregation of endoderm, mesoderm, and ectoderm is essential for normal embryonic development of all species, yet how neighboring embryonic blastomeres can contribute to different germ layers has never been fully explained. We postulated that microRNAs, which fine-tune many biological processes, might modulate the response of embryonic blastomeres to growth factors and other signals that govern germ layer fate. A systematic screen of a whole-genome microRNA library revealed that the let-7 and miR-18 families increase mesoderm at the expense of endoderm in mouse embryonic stem cells. Both families are expressed in ectoderm and mesoderm, but not endoderm, as these tissues become distinct during mouse and frog embryogenesis. Blocking let-7 function in vivo dramatically affected cell fate, diverting presumptive mesoderm and ectoderm into endoderm. siRNA knockdown of computationally predicted targets followed by mutational analyses revealed that let-7 and miR-18 down-regulate Acvr1b and Smad2, respectively, to attenuate Nodal responsiveness and bias blastomeres to ectoderm and mesoderm fates. These findings suggest a crucial role for the let-7 and miR-18 families in germ layer specification and reveal a remarkable conservation of function from amphibians to mammals.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental , Genome/genetics , Germ Layers/embryology , MicroRNAs/metabolism , Animals , Cells, Cultured , DNA Mutational Analysis , Embryonic Stem Cells , Gene Knockdown Techniques , Mice , MicroRNAs/genetics , Xenopus laevis
9.
Dev Biol ; 441(1): 127-131, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29964026

ABSTRACT

In mouse, retinoic acid (RA) is required for the early phase of body axis extension controlled by a population of neuromesodermal progenitors (NMPs) in the trunk called expanding-NMPs, but not for the later phase of body axis extension controlled by a population of NMPs in the tail called depleting-NMPs. Recent observations suggest that zebrafish utilize depleting-NMPs but not expanding-NMPs for body axis extension. In zebrafish, a role for RA in body axis extension was not supported by previous studies on aldh1a2 (raldh2) mutants lacking RA synthesis. Here, by treating zebrafish embryos with an RA synthesis inhibitor, we also found that body axis extension and somitogenesis was not perturbed, although loss of pectoral fin and cardiac edema were observed consistent with previous studies. The conclusion that zebrafish diverges from mouse in not requiring RA for body axis extension is consistent with zebrafish lacking early expanding-NMPs to generate the trunk. We suggest that RA control of body axis extension was added to higher vertebrates during evolution of expanding-NMPs.


Subject(s)
Embryo, Mammalian/embryology , Embryo, Nonmammalian/embryology , Mesoderm/embryology , Neural Stem Cells/metabolism , Tretinoin/metabolism , Zebrafish/embryology , Animals , Embryo, Mammalian/cytology , Embryo, Nonmammalian/cytology , Mesoderm/cytology , Mice , Neural Stem Cells/cytology , Species Specificity
10.
Mamm Genome ; 30(7-8): 173-191, 2019 08.
Article in English | MEDLINE | ID: mdl-31203387

ABSTRACT

Neurodegenerative disease encompasses a wide range of disorders afflicting the central and peripheral nervous systems and is a major unmet biomedical need of our time. There are very limited treatments, and no cures, for most of these diseases, including Alzheimer's Disease, Parkinson's Disease, Huntington Disease, and Motor Neuron Diseases. Mouse and other animal models provide hope by analysing them to understand pathogenic mechanisms, to identify drug targets, and to develop gene therapies and stem cell therapies. However, despite many decades of research, virtually no new treatments have reached the clinic. Increasingly, it is apparent that human heterogeneity within clinically defined neurodegenerative disorders, and between patients with the same genetic mutations, significantly impacts disease presentation and, potentially, therapeutic efficacy. Therefore, stratifying patients according to genetics, lifestyle, disease presentation, ethnicity, and other parameters may hold the key to bringing effective therapies from the bench to the clinic. Here, we discuss genetic and cellular humanised mouse models, and how they help in defining the genetic and environmental parameters associated with neurodegenerative disease, and so help in developing effective precision medicine strategies for future healthcare.


Subject(s)
Disease Models, Animal , Neurodegenerative Diseases/therapy , Precision Medicine , Animals , Chimera , Humans , Mice , Mice, Transgenic , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , Phenotype
11.
Dev Biol ; 418(1): 204-215, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27506116

ABSTRACT

Retinoic acid (RA) repression of Fgf8 is required for many different aspects of organogenesis, however relatively little is known about how endogenous RA controls gene repression as opposed to gene activation. Here, we show that nuclear receptor corepressors NCOR1 and NCOR2 (SMRT) redundantly mediate the ability of RA to repress Fgf8. Ncor1;Ncor2 double mutants generated by CRISPR/Cas9 gene editing exhibited a small somite and distended heart phenotype similar to that of RA-deficient Raldh2-/- embryos, associated with increased Fgf8 expression and FGF signaling in caudal progenitors and heart progenitors. Embryo chromatin immunoprecipitation studies revealed that NCOR1/2 but not coactivators are recruited to the Fgf8 RA response element (RARE) in an RA-dependent manner, whereas coactivators but not NCOR1/2 are recruited RA-dependently to a RARE near Rarb that is activated by RA. CRISPR/Cas9-mediated genomic deletion of the Fgf8 RARE in mouse embryos often resulted in a small somite defect with Fgf8 derepression caudally, but no defect was observed in heart development or heart Fgf8 expression. This suggests the existence of another DNA element whose function overlaps with the Fgf8 RARE to mediate Fgf8 repression by RA and NCOR1/2. Our studies support a model in which NCOR1/2 mediates direct RA-dependent repression of Fgf8 in caudal progenitors in order to control somitogenesis.


Subject(s)
Fibroblast Growth Factor 8/antagonists & inhibitors , Nuclear Receptor Co-Repressor 1/genetics , Nuclear Receptor Co-Repressor 2/genetics , Organogenesis/genetics , Somites/abnormalities , Tretinoin/metabolism , Aldehyde Oxidoreductases/genetics , Animals , Base Sequence , Co-Repressor Proteins/genetics , Embryonic Development , Gene Editing/methods , Heart/embryology , Mice , Mice, Knockout , Signal Transduction , Somites/embryology
12.
Development ; 141(19): 3772-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25209250

ABSTRACT

Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1(-/-) embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain.


Subject(s)
Body Patterning/physiology , Endoderm/physiology , Gastrointestinal Tract/embryology , Gene Expression Regulation, Developmental/physiology , Gene Regulatory Networks/physiology , Glycoproteins/metabolism , Signal Transduction/physiology , Activins/metabolism , Aldehyde Oxidoreductases/metabolism , Animals , Electrophoretic Mobility Shift Assay , Gene Regulatory Networks/genetics , Genetic Vectors/genetics , HMGB Proteins/metabolism , Intercellular Signaling Peptides and Proteins , Luciferases , Mice , Mice, Knockout , Real-Time Polymerase Chain Reaction , Receptors, Retinoic Acid/metabolism , SOXF Transcription Factors/metabolism
13.
Dev Dyn ; 244(6): 797-807, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25809880

ABSTRACT

BACKGROUND: Vertebrate body axis extension occurs in a head-to-tail direction from a caudal progenitor zone that responds to interacting signals. Wnt/ß-catenin signaling is critical for generation of paraxial mesoderm, somite formation, and maintenance of the axial stem cell pool. Body axis extension requires Wnt8a in lower vertebrates, but in mammals Wnt3a is required, although the anterior trunk develops in the absence of Wnt3a. RESULTS: We examined mouse Wnt8a(-/-) and Wnt3a(-/-) single and double mutants to explore whether mammalian Wnt8a contributes to body axis extension and to determine whether a posterior growth function for Wnt8a is conserved throughout the vertebrate lineage. We find that caudal Wnt8a is expressed only during early somite stages and is required for normal development of the anterior trunk in the absence of Wnt3a. During this time, we show that Wnt8a and Wnt3a cooperate to maintain Fgf8 expression and prevent premature Sox2 up-regulation in the axial stem cell niche, critical for posterior growth. Similar to Fgf8, Wnt8a requires retinoic acid (RA) signaling to restrict its caudal expression boundary and possesses an upstream RA response element that binds RA receptors. CONCLUSIONS: These findings provide new insight into interaction of caudal Wnt-FGF-RA signals required for body axis extension.


Subject(s)
Body Patterning/physiology , Intercellular Signaling Peptides and Proteins/physiology , Stem Cell Niche/physiology , Wnt3A Protein/physiology , Abnormalities, Multiple/embryology , Abnormalities, Multiple/genetics , Alcohol Oxidoreductases/deficiency , Alcohol Oxidoreductases/genetics , Animals , Body Patterning/genetics , Conserved Sequence , Fibroblast Growth Factor 8/biosynthesis , Fibroblast Growth Factor 8/genetics , Gastrulation , Gene Expression Regulation, Developmental , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Intercellular Signaling Peptides and Proteins/deficiency , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Phenotype , Receptors, Retinoic Acid/physiology , Response Elements/genetics , SOXB1 Transcription Factors/biosynthesis , SOXB1 Transcription Factors/genetics , Signal Transduction/physiology , Somites/growth & development , Somites/metabolism , Tretinoin/pharmacology , Vertebrates/embryology , Wnt Proteins , Wnt3A Protein/deficiency , Wnt3A Protein/genetics
14.
Blood ; 122(2): 188-92, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23699597

ABSTRACT

Mutations in the Wilms tumor suppressor 1 (WT1) gene are as frequent in acute myeloid leukemia (AML) as in nephroblastma and predict poor prognosis. However, the role of WT1 in hematopoiesis remains unclear. We show that Wt1-deficient mouse embryonic stem cells exhibit reduced hematopoietic potential caused by vascular endothelial growth factor A (Vegf-a)-dependent apoptosis of hematopoietic progenitor cells associated with overproduction of the Vegf-a120 isoform. We demonstrate that Wt1 promotes exon inclusion using a Vegf-a minigene-based splicing assay. These data identify a critical role for Wt1 in hematopoiesis and Vegf-a as a cellular RNA whose splicing is potentially regulated by Wt1. The correction of Wt1 deficiency by treatment with exogenous Vegf-a protein indicates that the Wt1/Vegf-a axis is a molecular pathway that could be exploited for the management/treatment of poor prognosis AMLs.


Subject(s)
Alternative Splicing , Hematopoiesis/physiology , Vascular Endothelial Growth Factor A/genetics , WT1 Proteins/genetics , WT1 Proteins/metabolism , Alleles , Animals , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Gene Knockout Techniques , Mice , Vascular Endothelial Growth Factor A/metabolism , WT1 Proteins/deficiency
15.
Development ; 138(1): 139-48, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21138976

ABSTRACT

Epicardial signaling and Rxra are required for expansion of the ventricular myocardial compact zone. Here, we examine Raldh2(-/-) and Rxra(-/-) mouse embryos to investigate the role of retinoic acid (RA) signaling in this developmental process. The heart phenotypes of Raldh2 and Rxra mutants are very similar and are characterized by a prominent defect in ventricular compact zone growth. Although RA activity is completely lost in Raldh2(-/-) epicardium and the adjacent myocardium, RA activity is not lost in Rxra(-/-) hearts, suggesting that RA signaling in the epicardium/myocardium is not required for myocardial compact zone formation. We explored the possibility that RA-mediated target gene transcription in non-cardiac tissues is required for this process. We found that hepatic expression of erythropoietin (EPO), a secreted factor implicated in myocardial expansion, is dependent on both Raldh2 and Rxra. Chromatin immunoprecipitation studies support Epo as a direct target of RA signaling in embryonic liver. Treatment of an epicardial cell line with EPO, but not RA, upregulates Igf2. Furthermore, both Raldh2(-/-) and Rxra(-/-) hearts exhibit downregulation of Igf2 mRNA in the epicardium. EPO treatment of cultured Raldh2(-/-) hearts restores epicardial Igf2 expression and rescues ventricular cardiomyocyte proliferation. We propose a new model for the mechanism of RA-mediated myocardial expansion in which RA directly induces hepatic Epo resulting in activation of epicardial Igf2 that stimulates compact zone growth. This RA-EPO-IGF2 signaling axis coordinates liver hematopoiesis with heart development.


Subject(s)
Erythropoietin/metabolism , Insulin-Like Growth Factor II/metabolism , Myocardium/metabolism , Pericardium/metabolism , Tretinoin/pharmacology , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Cells, Cultured , Chromatin Immunoprecipitation , Erythropoietin/genetics , Heart/drug effects , Heart/embryology , Immunohistochemistry , In Situ Hybridization , Insulin-Like Growth Factor II/genetics , Keratolytic Agents/pharmacology , Liver/drug effects , Liver/metabolism , Mice , Mice, Transgenic , Organ Culture Techniques , Pericardium/drug effects , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , Reverse Transcriptase Polymerase Chain Reaction
17.
Dev Dyn ; 242(9): 1056-65, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23765990

ABSTRACT

BACKGROUND: Retinoic acid (RA) signaling controls patterning and neuronal differentiation within the hindbrain, but forebrain RA function remains controversial. RA is produced from metabolism of retinol to retinaldehyde by retinol dehydrogenase (RDH), followed by metabolism of retinaldehyde to RA by retinaldehyde dehydrogenase (RALDH). Previous studies on Raldh2-/- and Raldh3-/- mice demonstrated an RA requirement for γ-aminobutyric acid (GABA)ergic and dopaminergic differentiation in forebrain basal ganglia, but no RA requirement was observed during early forebrain patterning or subsequent forebrain cortical expansion. However, other studies suggested that RA controls forebrain patterning, and analysis of ethylnitrosourea-induced Rdh10 mutants suggested that RA synthesized in the meninges stimulates forebrain cortical expansion. RESULTS: We generated Rdh10-/- mouse embryos that lack RA activity early in the head and later in the meninges. We observed defects in hindbrain patterning and eye RA signaling, but early forebrain patterning was unaffected. Retinaldehyde treatment of Rdh10-/- embryos from E7-E9 rescues a cranial skeletal defect, resulting in E14.5 embryos lacking meningeal RA activity but maintaining normal forebrain shape and cortical expansion. CONCLUSIONS: Rdh10-/- embryos demonstrate that RA controls hindbrain but not early forebrain patterning, while studies on retinaldehyde-rescued Rdh10-/- embryos show that meningeal RA synthesis is unnecessary to stimulate forebrain cortical expansion.


Subject(s)
Alcohol Oxidoreductases/metabolism , Embryo, Mammalian/embryology , Neurogenesis/physiology , Prosencephalon/embryology , Retinaldehyde/metabolism , Tretinoin/metabolism , Alcohol Oxidoreductases/genetics , Animals , Embryo, Mammalian/cytology , Eye/cytology , Eye/embryology , Mice , Mice, Knockout , Prosencephalon/cytology , Retinaldehyde/genetics , Signal Transduction/physiology
18.
Neuronal Signal ; 8(1): NS20230020, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222463

ABSTRACT

This scientific commentary refers to 'Inhibition of insulin-degrading enzyme in human neurons promotes amyloid-ß deposition' by Rowland et al. (https://doi.org/10.1042/NS20230016). Insulin-degrading enzyme (IDE) and neprilysin (NEP) have been proposed as two Aß-degrading enzymes supported by human genetics and in vivo data. Rowland et al. provide complementary evidence of a key role for IDE in Aß metabolism in human-induced pluripotent stem cell (iPSC)-derived cortical neurons.

19.
Dis Model Mech ; 17(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38804708

ABSTRACT

The TATA box-binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of the basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in human males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked dystonia-parkinsonism, a neurodegenerative disorder. However, this field has lacked a genetic mouse model of TAF1 disease to explore its mechanism in mammals and treatments. Here, we generated and validated a conditional cre-lox allele and the first ubiquitous Taf1 knockout mouse. We discovered that Taf1 deletion in male mice was embryonically lethal, which may explain why no null variants have been identified in humans. In the brains of Taf1 heterozygous female mice, no differences were found in gross structure, overall expression and protein localisation, suggesting extreme skewed X inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting that a small subset of neurons was negatively impacted by Taf1 loss. Finally, this new mouse model may be a future platform for the development of TAF1 disease therapeutics.


Subject(s)
Body Weight , Heterozygote , Histone Acetyltransferases , Mice, Knockout , Movement Disorders , TATA-Binding Protein Associated Factors , Transcription Factor TFIID , Animals , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/genetics , Transcription Factor TFIID/metabolism , Transcription Factor TFIID/deficiency , Female , Male , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Movement Disorders/genetics , Movement Disorders/pathology , Embryo, Mammalian/metabolism , Mice , Brain/pathology , Brain/metabolism , Genes, Lethal , Mice, Inbred C57BL
20.
Mol Neurodegener ; 18(1): 30, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37143081

ABSTRACT

Amyotrophic lateral sclerosis is a complex disorder most of which is 'sporadic' of unknown origin but approximately 10% is familial, arising from single mutations in any of more than 30 genes. Thus, there are more than 30 familial ALS subtypes, with different, often unknown, molecular pathologies leading to a complex constellation of clinical phenotypes. We have mouse models for many genetic forms of the disorder, but these do not, on their own, necessarily show us the key pathological pathways at work in human patients. To date, we have no models for the 90% of ALS that is 'sporadic'. Potential therapies have been developed mainly using a limited set of mouse models, and through lack of alternatives, in the past these have been tested on patients regardless of aetiology. Cancer researchers have undertaken therapy development with similar challenges; they have responded by producing complex mouse models that have transformed understanding of pathological processes, and they have implemented patient stratification in multi-centre trials, leading to the effective translation of basic research findings to the clinic. ALS researchers have successfully adopted this combined approach, and now to increase our understanding of key disease pathologies, and our rate of progress for moving from mouse models to mechanism to ALS therapies we need more, innovative, complex mouse models to address specific questions.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice , Animals , Humans , Amyotrophic Lateral Sclerosis/metabolism , Disease Models, Animal , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL