Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nat Immunol ; 25(5): 820-833, 2024 May.
Article in English | MEDLINE | ID: mdl-38600356

ABSTRACT

Human bone marrow permanently harbors high numbers of neutrophils, and a tumor-supportive bias of these cells could significantly impact bone marrow-confined malignancies. In individuals with multiple myeloma, the bone marrow is characterized by inflammatory stromal cells with the potential to influence neutrophils. We investigated myeloma-associated alterations in human marrow neutrophils and the impact of stromal inflammation on neutrophil function. Mature neutrophils in myeloma marrow are activated and tumor supportive and transcribe increased levels of IL1B and myeloma cell survival factor TNFSF13B (BAFF). Interactions with inflammatory stromal cells induce neutrophil activation, including BAFF secretion, in a STAT3-dependent manner, and once activated, neutrophils gain the ability to reciprocally induce stromal activation. After first-line myeloid-depleting antimyeloma treatment, human bone marrow retains residual stromal inflammation, and newly formed neutrophils are reactivated. Combined, we identify a neutrophil-stromal cell feed-forward loop driving tumor-supportive inflammation that persists after treatment and warrants novel strategies to target both stromal and immune microenvironments in multiple myeloma.


Subject(s)
B-Cell Activating Factor , Interleukin-1beta , Multiple Myeloma , Neutrophils , Stromal Cells , Tumor Microenvironment , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Humans , Tumor Microenvironment/immunology , Neutrophils/immunology , Neutrophils/metabolism , Stromal Cells/metabolism , Stromal Cells/immunology , B-Cell Activating Factor/metabolism , Interleukin-1beta/metabolism , Neutrophil Activation , STAT3 Transcription Factor/metabolism , Bone Marrow/immunology , Bone Marrow/pathology
2.
Annu Rev Immunol ; 30: 647-75, 2012.
Article in English | MEDLINE | ID: mdl-22224763

ABSTRACT

Innate lymphoid cells (ILCs) are immune cells that lack a specific antigen receptor yet can produce an array of effector cytokines that in variety match that of T helper cell subsets. ILCs function in lymphoid organogenesis, tissue remodeling, antimicrobial immunity, and inflammation, particularly at barrier surfaces. Their ability to promptly respond to insults inflicted by stress-causing microbes strongly suggests that ILCs are critical in first-line immunological defenses. Here, we review current data on developmental requirements, lineage relationships, and effector functions of two families of ILCs: (a) Rorγt-expressing cells involved in lymphoid tissue formation, mucosal immunity, and inflammation and (b) type 2 ILCs that are important for helminth immunity. We also discuss the potential roles of ILCs in the pathology of immune-mediated inflammatory and infectious diseases including allergy.


Subject(s)
Immunity, Innate , Lymphocytes/immunology , Lymphocytes/metabolism , Animals , Cell Differentiation/immunology , Cell Lineage , Humans , Lymphocytes/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
3.
Nat Immunol ; 22(6): 769-780, 2021 06.
Article in English | MEDLINE | ID: mdl-34017122

ABSTRACT

Progression and persistence of malignancies are influenced by the local tumor microenvironment, and future eradication of currently incurable tumors will, in part, hinge on our understanding of malignant cell biology in the context of their nourishing surroundings. Here, we generated paired single-cell transcriptomic datasets of tumor cells and the bone marrow immune and stromal microenvironment in multiple myeloma. These analyses identified myeloma-specific inflammatory mesenchymal stromal cells, which spatially colocalized with tumor cells and immune cells and transcribed genes involved in tumor survival and immune modulation. Inflammatory stromal cell signatures were driven by stimulation with proinflammatory cytokines, and analyses of immune cell subsets suggested interferon-responsive effector T cell and CD8+ stem cell memory T cell populations as potential sources of stromal cell-activating cytokines. Tracking stromal inflammation in individuals over time revealed that successful antitumor induction therapy is unable to revert bone marrow inflammation, predicting a role for mesenchymal stromal cells in disease persistence.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mesenchymal Stem Cells/immunology , Multiple Myeloma/immunology , Neoplasm Recurrence, Local/immunology , Tumor Microenvironment/immunology , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bone Marrow/drug effects , Bone Marrow/immunology , Bone Marrow/pathology , Cell Line, Tumor , Disease Progression , Female , Gene Expression Regulation, Neoplastic/immunology , Humans , Male , Mesenchymal Stem Cells/pathology , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/prevention & control , Primary Cell Culture , Prospective Studies , RNA-Seq , Single-Cell Analysis , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
4.
Nat Immunol ; 12(11): 1055-62, 2011 Sep 11.
Article in English | MEDLINE | ID: mdl-21909091

ABSTRACT

Innate lymphoid cells (ILCs) are emerging as a family of effectors and regulators of innate immunity and tissue remodeling. Interleukin 22 (IL-22)- and IL-17-producing ILCs, which depend on the transcription factor RORγt, express CD127 (IL-7 receptor α-chain) and the natural killer cell marker CD161. Here we describe another lineage-negative CD127(+)CD161(+) ILC population found in humans that expressed the chemoattractant receptor CRTH2. These cells responded in vitro to IL-2 plus IL-25 and IL-33 by producing IL-13. CRTH2(+) ILCs were present in fetal and adult lung and gut. In fetal gut, these cells expressed IL-13 but not IL-17 or IL-22. There was enrichment for CRTH2(+) ILCs in nasal polyps of chronic rhinosinusitis, a typical type 2 inflammatory disease. Our data identify a unique type of human ILC that provides an innate source of T helper type 2 (T(H)2) cytokines.


Subject(s)
Cytokines/metabolism , Immunity, Innate , Lymphocytes/metabolism , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Rhinitis/immunology , Sinusitis/immunology , Adult , Cell Differentiation , Cell Lineage , Cells, Cultured , Chronic Disease , Cytokines/immunology , Humans , Immunophenotyping , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukin-33 , Interleukins/immunology , Interleukins/metabolism , Intestines/pathology , Lymphocytes/immunology , Lymphocytes/pathology , NK Cell Lectin-Like Receptor Subfamily B/immunology , Nasal Polyps , Receptors, Immunologic/immunology , Receptors, Prostaglandin/immunology , Rhinitis/pathology , Rhinitis/physiopathology , Sinusitis/pathology , Sinusitis/physiopathology , Th2 Cells/immunology , Th2 Cells/metabolism
5.
Eur J Immunol ; 51(1): 76-90, 2021 01.
Article in English | MEDLINE | ID: mdl-32700362

ABSTRACT

Upon viral infection, stressed or damaged cells can release alarmins like IL-33 that act as endogenous danger signals alerting innate and adaptive immune cells. IL-33 coming from nonhematopoietic cells has been identified as important factor triggering the expansion of antiviral CD8+ T cells. In LN the critical cellular source of IL-33 is unknown, as is its potential cell-intrinsic function as a chromatin-associated factor. Using IL-33-GFP reporter mice, we identify fibroblastic reticular cells (FRC) and lymphatic endothelial cells (LEC) as the main IL-33 source. In homeostasis, IL-33 is dispensable as a transcriptional regulator in FRC, indicating it functions mainly as released cytokine. Early during infection with lymphocytic choriomeningitis virus (LCMV) clone 13, both FRC and LEC lose IL-33 protein expression suggesting cytokine release, correlating timewise with IL-33 receptor expression by reactive CD8+ T cells and their greatly augmented expansion in WT versus ll33-/- mice. Using mice lacking IL-33 selectively in FRC versus LEC, we identify FRC as key IL-33 source driving acute and chronic antiviral T-cell responses. Collectively, these findings show that LN T-zone FRC not only regulate the homeostasis of naïve T cells but also their expansion and differentiation several days into an antiviral response.


Subject(s)
Interleukin-33/metabolism , Lymphocytic Choriomeningitis/immunology , Acute Disease , Adaptive Immunity , Animals , CD8-Positive T-Lymphocytes/immunology , Chronic Disease , Endothelial Cells/immunology , Fibroblasts/immunology , Homeostasis , Humans , Immunity, Innate , Interleukin-33/deficiency , Interleukin-33/genetics , Lymph Nodes/immunology , Lymphocytic choriomeningitis virus/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Immunological
7.
Nat Immunol ; 10(1): 66-74, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19029905

ABSTRACT

The human body contains over 500 individual lymph nodes, yet the biology of their formation is poorly understood. Here we identify human lymphoid tissue-inducer cells (LTi cells) as lineage-negative RORC+ CD127+ cells with the functional ability to interact with mesenchymal cells through lymphotoxin and tumor necrosis factor. Human LTi cells were committed natural killer (NK) cell precursors that produced interleukin 17 (IL-17) and IL-22. In vitro, LTi cells gave rise to RORC+ CD127+ NK cells that retained the ability to produce IL-17 and IL-22. Postnatally, similar populations of LTi cell-like cells and RORC+ CD127+ NK cells were present in tonsils, and both secreted IL-17 and IL-22 but no interferon-gamma. Our data indicate that lymph node organogenesis is controlled by an NK cell precursor population with adaptive immune features and demonstrate a previously unappreciated link between the innate and adaptive immune systems.


Subject(s)
Interleukin-17/biosynthesis , Lymph Nodes/embryology , Lymph Nodes/immunology , Natural Killer T-Cells/immunology , Organogenesis , Precursor Cells, T-Lymphoid/immunology , Animals , CD56 Antigen/metabolism , Cell Differentiation , Cells, Cultured , Humans , Immunity, Cellular , Immunity, Innate , Interferon-gamma/biosynthesis , Interleukin-7 Receptor alpha Subunit/immunology , Interleukins/biosynthesis , Lymph Nodes/cytology , Lymphoid Tissue/embryology , Lymphoid Tissue/immunology , Lymphotoxin-alpha/immunology , Mesentery/embryology , Mesentery/immunology , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3 , Palatine Tonsil/cytology , Palatine Tonsil/immunology , Receptors, Retinoic Acid/immunology , Receptors, Thyroid Hormone/immunology , Spleen/embryology , Spleen/immunology , Interleukin-22
8.
Nature ; 528(7583): 560-564, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26649819

ABSTRACT

Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.


Subject(s)
Epithelial Cells/cytology , Interleukins/immunology , Intestinal Mucosa/cytology , Intestine, Small/cytology , Regeneration , Stem Cells/cytology , Stem Cells/metabolism , Animals , Epithelial Cells/immunology , Epithelial Cells/pathology , Female , Graft vs Host Disease/pathology , Humans , Immunity, Mucosal , Interleukins/deficiency , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestine, Small/immunology , Intestine, Small/pathology , Mice , Organoids/cytology , Organoids/growth & development , Organoids/immunology , Paneth Cells/cytology , Phosphorylation , STAT3 Transcription Factor/metabolism , Signal Transduction , Stem Cell Niche , Interleukin-22
9.
Eur J Immunol ; 49(2): 290-301, 2019 02.
Article in English | MEDLINE | ID: mdl-30537036

ABSTRACT

Under homeostatic conditions, dendritic cells (DCs) continuously patrol the intestinal lamina propria. Upon antigen encounter, DCs initiate C-C motif chemokine receptor 7 (CCR7) expression and migrate into lymph nodes to direct T cell activation and differentiation. The mechanistic underpinnings of DC migration from the tissues to lymph nodes have been largely elucidated, contributing greatly to our understanding of DC functionality and intestinal immunity. In contrast, the molecular mechanisms allowing DCs to efficiently migrate through the complex extracellular matrix of the intestinal lamina propria prior to antigen encounter are still incompletely understood. Here we show that small intestinal murine CD11b+ CD103+ DCs express Placenta-expressed transcript 1 (Plet1), a glycophoshatidylinositol (GPI)-anchored surface protein involved in migration of keratinocytes during wound healing. In the absence of Plet1, CD11b+ CD103+ DCs display aberrant migratory behavior, and accumulate in the small intestine, independent of CCR7 responsiveness. RNA-sequencing indicated involvement of Plet1 in extracellular matrix-interactiveness, and subsequent in-vitro migration assays revealed that Plet1 augments the ability of DCs to migrate through extracellular matrix containing environments. In conclusion, our findings reveal that expression of Plet1 facilitates homeostatic interstitial migration of small intestinal DCs.


Subject(s)
Cell Movement/immunology , Dendritic Cells/metabolism , Gene Expression Regulation/immunology , Intestine, Small/immunology , Pregnancy Proteins/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , Cell Movement/genetics , Mice , Mice, Knockout , Pregnancy Proteins/genetics
10.
Eur J Immunol ; 48(9): 1441-1444, 2018 09.
Article in English | MEDLINE | ID: mdl-30178531

ABSTRACT

The relevance of innate lymphoid cells (ILC) for anti-infectious immunity remains a matter of constant debate. At the same time, evidence for additional, non-immune related functions of ILC is steadily increasing. In the thymus, non-immune functions of ILC were shown for group 3 ILC (ILC3), which regulate differentiation and proliferation of thymic epithelial cells. In this issue of the European Journal of Immunology, Withers and colleagues [Eur. J. Immunol. 2018. 48: 1481-1491] now show that ILC2, a subset of ILCs specialized in tissue protection and regeneration, are the major ILC subset in the adult thymus, heavily outnumbering ILC3. These findings raise novel questions on the function of thymic ILC, and warrant re-evaluation of the importance of ILC2 and their cytokines during thymic function and repair.


Subject(s)
Immunity, Innate , Lymphocytes , Adult , Animals , Cell Count , Cell Differentiation , Cytokines , Mice
12.
Eur J Immunol ; 46(6): 1404-14, 2016 06.
Article in English | MEDLINE | ID: mdl-27067635

ABSTRACT

Interleukin 22 (IL-22) expression is associated with increased joint destruction and disease progression in rheumatoid arthritis (RA). Although IL-22 is considered a pro-inflammatory cytokine, its mechanism of action in RA remains incompletely understood. Here, we used the collagen-induced arthritis model in IL-22 deficient (IL-22(-/-) ) mice to study the role of IL-22 in RA. In spite of normal disease incidence, disease severity is significantly diminished in IL-22(-/-) mice. Moreover, pathogenicity of Th17 cells and development and function of B cells are unaffected. In contrast, splenic plasma cells, as well as serum autoantibody titers, are reduced in the absence of IL-22. At the peak of disease, germinal centers (GCs) are severely reduced in the spleens of IL-22(-/-) mice, correlating with a decline in GC B-cell numbers. Within the GC, we identified IL-22R1 expressing follicular dendritic cell-like stromal cells. Human lymphoid stromal cells respond to IL-22 ex vivo by inducing transcription of CXCL12 and CXCL13. We therefore postulate IL-22 as an important enhancer of the GC reaction, maintaining chemokine levels for the persistence of GC reactions, essential for the production of autoantibody-secreting plasma cells. Blocking IL-22 might therefore prevent immune-complex deposition and destruction of joints in RA patients.


Subject(s)
Antibody Formation/genetics , Antibody Formation/immunology , Arthritis, Experimental/etiology , Autoantibodies/immunology , Interleukins/deficiency , Animals , Antibody Specificity/immunology , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Coculture Techniques , Disease Models, Animal , Germinal Center/immunology , Germinal Center/metabolism , Lymphocyte Activation , Mice , Mice, Knockout , Plasma Cells/immunology , Plasma Cells/metabolism , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Severity of Illness Index , Stromal Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Interleukin-22
13.
Blood ; 125(3): 465-9, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25301706

ABSTRACT

Clusters of cells attached to the endothelium of the main embryonic arteries were first observed a century ago. Present in most vertebrate species, such clusters, or intraaortic hematopoietic clusters (IAHCs), derive from specialized hemogenic endothelial cells and contain the first few hematopoietic stem cells (HSCs) generated during embryonic development. However, some discrepancies remained concerning the spatio-temporal appearance and the numbers of IAHCs and HSCs. Therefore, the exact cell composition and function of IAHCs remain unclear to date. We show here that IAHCs contain pre-HSCs (or HSC precursors) that can mature into HSCs in vivo (as shown by the successful long-term multilineage reconstitution of primary neonates and secondary adult recipients). Such IAHC pre-HSCs could contribute to the HSC pool increase observed at midgestation. The novel insights in pre-HSC to HSC transition represent an important step toward generating transplantable HSCs in vitro that are needed for autologous HSC transplantation therapies.


Subject(s)
Aorta/embryology , Cell Differentiation , Hematopoietic Stem Cells/cytology , Animals , Female , Mice , Organ Culture Techniques
15.
J Immunol ; 195(9): 4257-4263, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26378073

ABSTRACT

Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation, and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized stromal niche for ILC3 has not been identified. A novel lineage-tracing approach now identifies a subset of murine fetal lymphoid tissue organizer cells that gives rise exclusively to adult marginal reticular cells. Moreover, both cell types are conserved from mice to humans and colocalize with ILC3 in secondary lymphoid tissues throughout life. In sum, we provide evidence that fetal stromal organizers give rise to adult marginal reticular cells and form a dedicated stromal niche for innate ILC3 in adaptive lymphoid organs.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Lymphoid Tissue/immunology , Stem Cell Niche/immunology , Stromal Cells/immunology , Animals , Cell Lineage/genetics , Cell Lineage/immunology , Chemokines/immunology , Chemokines/metabolism , Female , Fetus/cytology , Flow Cytometry , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Intercellular Adhesion Molecule-1/metabolism , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocytes/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/metabolism , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice, Transgenic , Microscopy, Confocal , RANK Ligand/genetics , RANK Ligand/immunology , RANK Ligand/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stem Cell Niche/genetics , Stromal Cells/cytology , Stromal Cells/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology , Vascular Cell Adhesion Molecule-1/metabolism
16.
Curr Opin Hematol ; 23(4): 410-5, 2016 07.
Article in English | MEDLINE | ID: mdl-27135976

ABSTRACT

PURPOSE OF REVIEW: Innate lymphoid cells (ILC) have emerged as modulators of conditioning-induced tissue damage and development of graft-versus-host disease (GVHD) in the context of allogeneic hematopoietic stem cell transplantation (HSCT). This review highlights experimental and clinical evidence for a role of ILC in GVHD pathogenesis. RECENT FINDINGS: ILC are well known for their role in epithelial homeostasis and innate immunity. In addition, recent studies identified ILC as architects of intestinal responses to tissue damage after experimental radio and chemotherapy. Group 3 ILC, and their signature cytokine IL-22, can enhance intestinal stem cell regeneration and protect the stem cell niche from damage during experimental HSCT. Moreover, in leukemia patients undergoing HSCT conditioning, appearance of activated group 3 ILC prior to transplant is correlated to reduced incidence of acute GVHD. SUMMARY: ILC have a profound impact on the recovery from tissue damage and severity of GVHD in experimental models. Together with the available data from leukemia patients, this argues for in-depth analysis of the mechanisms of ILC function and the translation of experimental findings to clinical application. Ultimately, control of ILC activation, or of the cytokines they produce, could be employed to reduce GVHD lesion in patients receiving allogeneic HSCT.


Subject(s)
Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Animals , Cytokines/metabolism , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Leukemia/complications , Leukemia/therapy , Transplantation, Homologous
17.
Development ; 140(9): 2015-26, 2013 May.
Article in English | MEDLINE | ID: mdl-23571219

ABSTRACT

The thymus is the central site of T-cell development and thus is of fundamental importance to the immune system, but little information exists regarding molecular regulation of thymus development in humans. Here we demonstrate, via spatial and temporal expression analyses, that the genetic mechanisms known to regulate mouse thymus organogenesis are conserved in humans. In addition, we provide molecular evidence that the human thymic epithelium derives solely from the third pharyngeal pouch, as in the mouse, in contrast to previous suggestions. Finally, we define the timing of onset of hematopoietic cell colonization and epithelial cell differentiation in the human thymic primordium, showing, unexpectedly, that the first colonizing hematopoietic cells are CD45(+)CD34(int/-). Collectively, our data provide essential information for translation of principles established in the mouse to the human, and are of particular relevance to development of improved strategies for enhancing immune reconstitution in patients.


Subject(s)
Gene Expression Regulation, Developmental , Organogenesis , Thymus Gland/embryology , Animals , Antigens, CD34/genetics , Antigens, CD34/metabolism , Carotid Arteries/embryology , Carotid Arteries/metabolism , Cell Differentiation , Cell Lineage , Cell Movement , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Embryonic Development , Endoderm/cytology , Endoderm/metabolism , Epithelium/embryology , Epithelium/metabolism , Female , Fetus/cytology , Fetus/embryology , Fetus/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Immunohistochemistry , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , PAX9 Transcription Factor/genetics , PAX9 Transcription Factor/metabolism , Pregnancy , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Time Factors
18.
Am J Pathol ; 185(7): 1935-43, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25963989

ABSTRACT

Tertiary lymphoid structures (TLSs) in chronic inflammation, including rheumatoid arthritis (RA) synovial tissue (ST), often contain high endothelial venules and follicular dendritic cells (FDCs). Endothelial cell (EC)-specific lymphotoxin ß (LTß) receptor signaling is critical for the formation of lymph nodes and high endothelial venules. FDCs arise from perivascular platelet-derived growth factor receptor ß(+) precursor cells (preFDCs) that require specific group 3 innate lymphoid cells (ILC3s) and LTß for their expansion. Previously, we showed that RA ST contains ECs that express NF-κB-inducing kinase (NIK), which is pivotal in LTß-induced noncanonical NF-κB signaling. We studied the relation between NIK(+) ECs, (pre)FDCs, and ILC3s with respect to TLSs in RA ST. TLS(+) tissues exhibited a significantly increased expression of genes involved in noncanonical NF-κB signaling, including NIK, and immunohistochemical analysis revealed that NIK was almost exclusively expressed by ECs. ILC3s were present in human RA ST in very low numbers, but not differentially in TLS(+) tissues. In contrast, TLS(+) tissues contained significantly more NIK(+) ECs and perivascular platelet-derived growth factor receptor ß(+) preFDCs, which correlated significantly with the quantity of FDCs. We established a strong link between NIK(+) ECs, (pre)FDCs, and the presence of TLSs, indicating that NIK(+) ECs may not only be important orchestrators of lymph node development but also contribute to the formation of TLSs in chronic inflammation.


Subject(s)
Arthritis, Rheumatoid/pathology , Endothelial Cells/enzymology , Lymphoid Tissue/pathology , Signal Transduction , Adult , Aged , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Endothelial Cells/metabolism , Female , Humans , Inflammation , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Lymphotoxin beta Receptor/metabolism , Male , Middle Aged , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Synovial Membrane/immunology , Synovial Membrane/metabolism , Synovial Membrane/pathology , NF-kappaB-Inducing Kinase
19.
Blood ; 124(5): 673-5, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25082864

ABSTRACT

n this issue of Blood, Hazenberg and Spits provide a detailed overview of human innate lymphoid cell (ILC) subsets and their development and distribution throughout the human body, discussing these cells in the context of human disease. In the same issue, Munneke et al for the first time link ILCs to human hematopoietic malignancies by identifying a clear correlation between the presence of activated ILCs after induction chemotherapy and the absence of acute graft-versus-host disease (GVHD) development following subsequent hematopoietic stem cell transplantation (HSCT).


Subject(s)
Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Immunity, Innate/physiology , Leukemia/therapy , Lymphocytes/cytology , Lymphocytes/immunology , Mucositis/immunology , Animals , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL