Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 56(11): 2570-2583.e6, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37909039

ABSTRACT

Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.


Subject(s)
Carcinoma , Immunoglobulin A , Humans , Immunoglobulin A/metabolism , CD8-Positive T-Lymphocytes/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Cytoplasm/metabolism
2.
Immunity ; 55(1): 115-128.e9, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021053

ABSTRACT

The immune checkpoint receptor PD-1 on T follicular helper (Tfh) cells promotes Tfh:B cell interactions and appropriate positioning within tissues. Here, we examined the impact of regulation of PD-1 expression by the genomic organizer SATB1 on Tfh cell differentiation. Vaccination of CD4CreSatb1f/f mice enriched for antigen-specific Tfh cells, and TGF-ß-mediated repression of SATB1 enhanced Tfh differentiation of human T cells. Mechanistically, high Icos expression in Satb1-/- CD4+ T cells promoted Tfh cell differentiation by preventing T follicular regulatory cell skewing and resulted in increased isotype-switched B cell responses in vivo. Ovarian tumors in CD4CreSatb1f/f mice accumulated tumor antigen-specific, LIGHT+CXCL13+IL-21+ Tfh cells and tertiary lymphoid structures (TLS). TLS formation decreased tumor growth in a CD4+ T cell and CXCL13-dependent manner. The transfer of Tfh cells, but not naive CD4+ T cells, induced TLS at tumor beds and decreased tumor growth. Thus, TGF-ß-mediated silencing of Satb1 licenses Tfh cell differentiation, providing insight into the genesis of TLS within tumors.


Subject(s)
Germinal Center/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Matrix Attachment Region Binding Proteins/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Tertiary Lymphoid Structures/immunology , Transforming Growth Factor beta/metabolism , Animals , Cell Differentiation , Gene Expression Regulation , Gene Silencing , Genotype , Matrix Attachment Region Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Transforming Growth Factor beta/genetics
3.
Mol Cell ; 83(20): 3679-3691.e8, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37797621

ABSTRACT

The tumor-suppressor breast cancer 1 (BRCA1) in complex with BRCA1-associated really interesting new gene (RING) domain 1 (BARD1) is a RING-type ubiquitin E3 ligase that modifies nucleosomal histone and other substrates. The importance of BRCA1-BARD1 E3 activity in tumor suppression remains highly controversial, mainly stemming from studying mutant ligase-deficient BRCA1-BARD1 species that we show here still retain significant ligase activity. Using full-length BRCA1-BARD1, we establish robust BRCA1-BARD1-mediated ubiquitylation with specificity, uncover multiple modes of activity modulation, and construct a truly ligase-null variant and a variant specifically impaired in targeting nucleosomal histones. Cells expressing either of these BRCA1-BARD1 separation-of-function alleles are hypersensitive to DNA-damaging agents. Furthermore, we demonstrate that BRCA1-BARD1 ligase is not only required for DNA resection during homology-directed repair (HDR) but also contributes to later stages for HDR completion. Altogether, our findings reveal crucial, previously unrecognized roles of BRCA1-BARD1 ligase activity in genome repair via HDR, settle prior controversies regarding BRCA1-BARD1 ligase functions, and catalyze new efforts to uncover substrates related to tumor suppression.


Subject(s)
Neoplasms , Tumor Suppressor Proteins , Humans , Tumor Suppressor Proteins/metabolism , BRCA1 Protein/metabolism , Ubiquitination , Histones/genetics , Histones/metabolism , Ubiquitin-Protein Ligases/metabolism , Recombinational DNA Repair , DNA , DNA Repair
4.
Immunity ; 54(9): 2117-2132.e7, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34525340

ABSTRACT

The nature of the anti-tumor immune response changes as primary tumors progress and metastasize. We investigated the role of resident memory (Trm) and circulating memory (Tcirm) cells in anti-tumor responses at metastatic locations using a mouse model of melanoma-associated vitiligo. We found that the transcriptional characteristics of tumor-specific CD8+ T cells were defined by the tissue of occupancy. Parabiosis revealed that tumor-specific Trm and Tcirm compartments persisted throughout visceral organs, but Trm cells dominated lymph nodes (LNs). Single-cell RNA-sequencing profiles of Trm cells in LN and skin were distinct, and T cell clonotypes that occupied both tissues were overwhelmingly maintained as Trm in LNs. Whereas Tcirm cells prevented melanoma growth in the lungs, Trm afforded long-lived protection against melanoma seeding in LNs. Expanded Trm populations were also present in melanoma-involved LNs from patients, and their transcriptional signature predicted better survival. Thus, tumor-specific Trm cells persist in LNs, restricting metastatic cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Lymph Nodes/immunology , Melanoma, Experimental/immunology , Melanoma/immunology , Skin Neoplasms/immunology , Animals , Humans , Mice , Vitiligo , Melanoma, Cutaneous Malignant
5.
Nature ; 619(7970): 475-486, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37468584

ABSTRACT

Immune checkpoint blockade (ICB) immunotherapy is a first-line treatment for selected cancers, yet the mechanisms of its efficacy remain incompletely understood. Furthermore, only a minority of patients with cancer benefit from ICB, and there is a lack of fully informative treatment response biomarkers. Selectively exploiting defects in DNA damage repair is also a standard treatment for cancer, spurred by enhanced understanding of the DNA damage response (DDR). DDR and ICB are closely linked-faulty DDR produces immunogenic cancer neoantigens that can increase the efficacy of ICB therapy, and tumour mutational burden is a good but imperfect biomarker for the response to ICB. DDR studies in ICB efficacy initially focused on contributions to neoantigen burden. However, a growing body of evidence suggests that ICB efficacy is complicated by the immunogenic effects of nucleic acids generated from exogenous DNA damage or endogenous processes such as DNA replication. Chemotherapy, radiation, or selective DDR inhibitors (such as PARP inhibitors) can generate aberrant nucleic acids to induce tumour immunogenicity independently of neoantigens. Independent of their functions in immunity, targets of immunotherapy such as cyclic GMP-AMP synthase (cGAS) or PD-L1 can crosstalk with DDR or the DNA repair machinery to influence the response to DNA-damaging agents. Here we review the rapidly evolving, multifaceted interfaces between DDR, nucleic acid immunogenicity and immunotherapy efficacy, focusing on ICB. Understanding these interrelated processes could explain ICB treatment failures and reveal novel exploitable therapeutic vulnerabilities in cancers. We conclude by addressing major unanswered questions and new research directions.


Subject(s)
DNA Damage , Immune Checkpoint Inhibitors , Immunotherapy , Neoplasms , Nucleic Acids , Humans , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , DNA Repair , Immunotherapy/methods , Immunotherapy/trends , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Nucleic Acids/metabolism , DNA Replication , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mutation , Biomarkers, Tumor , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
6.
Nature ; 599(7886): 673-678, 2021 11.
Article in English | MEDLINE | ID: mdl-34732895

ABSTRACT

Immune exclusion predicts poor patient outcomes in multiple malignancies, including triple-negative breast cancer (TNBC)1. The extracellular matrix (ECM) contributes to immune exclusion2. However, strategies to reduce ECM abundance are largely ineffective or generate undesired outcomes3,4. Here we show that discoidin domain receptor 1 (DDR1), a collagen receptor with tyrosine kinase activity5, instigates immune exclusion by promoting collagen fibre alignment. Ablation of Ddr1 in tumours promotes the intratumoral penetration of T cells and obliterates tumour growth in mouse models of TNBC. Supporting this finding, in human TNBC the expression of DDR1 negatively correlates with the intratumoral abundance of anti-tumour T cells. The DDR1 extracellular domain (DDR1-ECD), but not its intracellular kinase domain, is required for immune exclusion. Membrane-untethered DDR1-ECD is sufficient to rescue the growth of Ddr1-knockout tumours in immunocompetent hosts. Mechanistically, the binding of DDR1-ECD to collagen enforces aligned collagen fibres and obstructs immune infiltration. ECD-neutralizing antibodies disrupt collagen fibre alignment, mitigate immune exclusion and inhibit tumour growth in immunocompetent hosts. Together, our findings identify a mechanism for immune exclusion and suggest an immunotherapeutic target for increasing immune accessibility through reconfiguration of the tumour ECM.


Subject(s)
Collagen/metabolism , Discoidin Domain Receptor 1/metabolism , Extracellular Matrix/metabolism , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Tumor Escape , Animals , Cell Line, Tumor , Discoidin Domain Receptor 1/antagonists & inhibitors , Discoidin Domain Receptor 1/deficiency , Discoidin Domain Receptor 1/genetics , Disease Models, Animal , Extracellular Matrix/immunology , Female , Gene Deletion , Gene Knockout Techniques , Humans , Immunocompetence/immunology , Immunotherapy , Mice , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Triple Negative Breast Neoplasms/therapy
7.
Cancer Immunol Immunother ; 72(1): 125-136, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35748904

ABSTRACT

PURPOSE: Repeated instillations of bacillus Calmette et Guérin (BCG) are the gold standard immunotherapeutic treatment for reducing recurrence for patients with high-grade papillary non-muscle invasive bladder cancer (NMIBC) and for eradicating bladder carcinoma-in situ. Unfortunately, some patients are unable to tolerate BCG due to treatment-associated toxicity and bladder removal is sometimes performed for BCG-intolerance. Prior studies suggest that selectively delipidated BCG (dBCG) improves tolerability of intrapulmonary delivery reducing tissue damage and increasing efficacy in preventing Mycobacterium tuberculosis infection in mice. To address the lack of treatment options for NMIBC with BCG-intolerance, we examined if selective delipidation would compromise BCG's antitumor efficacy and at the same time increase tolerability to the treatment. MATERIALS AND METHODS: Murine syngeneic MB49 bladder cancer models and in vitro human innate effector cell cytotoxicity assays were used to evaluate efficacy and immune impact of selective delipidation in Tokyo and TICE BCG strains. RESULTS: Both dBCG-Tokyo and dBCG-TICE effectively treated subcutaneous MB49 tumors in mice and enhanced tumor-infiltrating CD8+ T and natural killer cells, similar to conventional BCG. However, when compared to conventional BCG, only dBCG-Tokyo retained a significant effect on intratumoral tumor-specific CD8+ and γδ T cells by increasing their frequencies in tumor tissue and their production of antitumoral function-related cytokines, i.e., IFN-γ and granzyme B. Further, dBCG-Tokyo but not dBCG-TICE enhanced the function and cytotoxicity of innate effector cells against human bladder cancer T24 in vitro. CONCLUSIONS: These data support clinical investigation of dBCG-Tokyo as a treatment for patients with BCG-intolerant NMIBC.


Subject(s)
Mycobacterium bovis , Non-Muscle Invasive Bladder Neoplasms , Urinary Bladder Neoplasms , Humans , Animals , Mice , BCG Vaccine/therapeutic use , Urinary Bladder Neoplasms/pathology , Cytokines
8.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563520

ABSTRACT

The interaction between tumor surface-expressed PDL1 and immune cell PD1 for the evasion of antitumor immunity is well established and is targeted by FDA-approved anti-PDL1 and anti-PD1 antibodies. Nonetheless, recent studies highlight the immunopathogenicity of tumor-intrinsic PDL1 signals that can contribute to the resistance to targeted small molecules, cytotoxic chemotherapy, and αPD1 immunotherapy. As genetic PDL1 depletion is not currently clinically tractable, we screened FDA-approved drugs to identify those that significantly deplete tumor PDL1. Among the candidates, we identified the ß-lactam cephalosporin antibiotic cefepime as a tumor PDL1-depleting drug (PDD) that increases tumor DNA damage and sensitivity to DNA-damaging agents in vitro in distinct aggressive mouse and human cancer lines, including glioblastoma multiforme, ovarian cancer, bladder cancer, and melanoma. Cefepime reduced tumor PDL1 post-translationally through ubiquitination, improved DNA-damaging-agent treatment efficacy in vivo in immune-deficient and -proficient mice, activated immunogenic tumor STING signals, and phenocopied specific genetic PDL1 depletion effects. The ß-lactam ring and its antibiotic properties did not appear contributory to PDL1 depletion or to these treatment effects, and the related cephalosporin ceftazidime produced similar effects. Our findings highlight the rapidly translated potential for PDDs to inhibit tumor-intrinsic PDL1 signals and improve DNA-damaging agents and immunotherapy efficacy.


Subject(s)
B7-H1 Antigen , Melanoma , Animals , B7-H1 Antigen/metabolism , Cefepime/pharmacology , Ceftazidime , DNA Damage , Mice
9.
J Biol Chem ; 293(8): 2841-2849, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29298894

ABSTRACT

Discoidin domain receptor 1 (DDR1) is a collagen receptor that mediates cell communication with the extracellular matrix (ECM). Aberrant expression and activity of DDR1 in tumor cells are known to promote tumor growth. Although elevated DDR1 levels in the stroma of breast tumors are associated with poor patient outcome, a causal role for tumor-extrinsic DDR1 in cancer promotion remains unclear. Here we report that murine mammary tumor cells transplanted to syngeneic recipient mice in which Ddr1 has been knocked out (KO) grow less robustly than in WT mice. We also found that the tumor-associated stroma in Ddr1-KO mice exhibits reduced collagen deposition compared with the WT controls, supporting a role for stromal DDR1 in ECM remodeling of the tumor microenvironment. Furthermore, the stromal-vascular fraction (SVF) of Ddr1 knockout adipose tissue, which contains committed adipose stem/progenitor cells and preadipocytes, was impaired in its ability to stimulate tumor cell migration and invasion. Cytokine array-based screening identified interleukin 6 (IL-6) as a cytokine secreted by the SVF in a DDR1-dependent manner. SVF-produced IL-6 is important for SVF-stimulated tumor cell invasion in vitro, and, using antibody-based neutralization, we show that tumor promotion by IL-6 in vivo requires DDR1. In conclusion, our work demonstrates a previously unrecognized function of DDR1 in promoting tumor growth.


Subject(s)
Adipose Tissue/metabolism , Breast Neoplasms/metabolism , Discoidin Domain Receptor 1/metabolism , Interleukin-6/metabolism , Stromal Cells/metabolism , Adipose Tissue/drug effects , Adipose Tissue/immunology , Adipose Tissue/pathology , Animals , Antibodies, Neutralizing/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Collagen/metabolism , Discoidin Domain Receptor 1/genetics , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness/immunology , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Stromal Cells/drug effects , Stromal Cells/immunology , Stromal Cells/pathology , Transplantation, Isogeneic , Tumor Burden/drug effects , Tumor Cells, Cultured , Tumor Microenvironment/drug effects
10.
Curr Treat Options Oncol ; 16(1): 317, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25648541

ABSTRACT

OPINION STATEMENT: All work referenced herein relates to treatment of epithelial ovarian carcinomas, as their treatment differs from ovarian germ cell cancers and other rare ovarian cancers, the treatments of which are addressed elsewhere. Fallopian tube cancers and primary peritoneal adenocarcinomatosis are also generally treated as epithelial ovarian cancers. The standard of care initial treatment of advanced stage epithelial ovarian cancer is optimal debulking surgery as feasible plus chemotherapy with a platinum plus a taxane agent. If this front-line approach fails, as it too often the case, several FDA-approved agents are available for salvage therapy. However, because no second-line therapy for advanced-stage epithelial ovarian cancer is typically curative, we prefer referral to clinical trials as logistically feasible, even if it means referring patients outside our system. Immune therapy has a sound theoretical basis for treating carcinomas generally, and for treating ovarian cancer in particular. Advances in understanding the immunopathogenic basis of ovarian cancer, and the immunopathologic basis for prior failures of immunotherapy for it and other carcinomas promises to afford novel treatment approaches with potential for significant efficacy, and reduced toxicities compared with cytotoxic agents. Thus, referral to early phase immunotherapy trials for ovarian cancer patients that fail conventional treatment merits consideration.


Subject(s)
Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Immunotherapy , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Female , Humans
11.
Nat Med ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871975

ABSTRACT

Microsatellite stable metastatic colorectal cancer (MSS mCRC; mismatch repair proficient) has previously responded poorly to immune checkpoint blockade. Botensilimab (BOT) is an Fc-enhanced multifunctional anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody designed to expand therapy to cold/poorly immunogenic solid tumors, such as MSS mCRC. BOT with or without balstilimab (BAL; anti-PD-1 antibody) is being evaluated in an ongoing expanded phase 1 study. The primary endpoint is safety and tolerability, which was evaluated separately in the dose-escalation portion of the study and in patients with MSS mCRC (using combined dose-escalation/dose-expansion data). Secondary endpoints include investigator-assessed RECIST version 1.1-confirmed objective response rate (ORR), disease control rate (DCR), duration of response (DOR) and progression-free survival (PFS). Here we present outcomes in 148 heavily pre-treated patients with MSS mCRC (six from the dose-escalation cohort; 142 from the dose-expansion cohort) treated with BOT and BAL, 101 of whom were considered response evaluable with at least 6 months of follow-up. Treatment-related adverse events (TRAEs) occurred in 89% of patients with MSS mCRC (131/148), most commonly fatigue (35%, 52/148), diarrhea (32%, 47/148) and pyrexia (24%, 36/148), with no grade 5 TRAEs reported and a 12% discontinuation rate due to a TRAE (18/148; data fully mature). In the response-evaluable population (n = 101), ORR was 17% (17/101; 95% confidence interval (CI), 10-26%), and DCR was 61% (62/101; 95% CI, 51-71%). Median DOR was not reached (NR; 95% CI, 5.7 months-NR), and median PFS was 3.5 months (95% CI, 2.7-4.1 months), at a median follow-up of 10.3 months (range, 0.5-42.6 months; data continuing to mature). The combination of BOT plus BAL demonstrated a manageable safety profile with no new immune-mediated safety signals and encouraging clinical activity with durable responses. ClinicalTrials.gov identifier: NCT03860272 .

12.
Cancer Discov ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083809

ABSTRACT

Conventional immune checkpoint inhibitors (ICI) targeting CTLA-4 elicit durable survival, but primarily in patients with immune-inflamed tumors. Although the mechanisms underlying response to anti-CTLA-4 remain poorly understood, Fc-gamma receptor (FcγR) IIIA co-engagement appears critical for activity, potentially explaining the modest clinical benefits of approved anti-CTLA-4 antibodies. We demonstrate that anti-CTLA-4 engineered for enhanced FcγR affinity leverages FcγR-dependent mechanisms to potentiate T cell responsiveness, reduce intratumoral Tregs, and enhance antigen presenting cell activation. Fc-enhanced anti-CTLA-4 promoted superior efficacy in mouse models and remodeled innate and adaptive immunity versus conventional anti-CTLA-4. These findings extend to patients treated with botensilimab, an Fc-enhanced anti-CTLA-4 antibody, with clinical activity across multiple poorly immunogenic and ICI treatment-refractory cancers. Efficacy was independent of tumor neoantigen burden or FcγRIIIA genotype. However, FcγRIIA and FcγRIIIA expression emerged as potential response biomarkers. These data highlight the therapeutic potential of Fc-enhanced anti-CTLA-4 antibodies in cancers unresponsive to conventional ICI therapy.

13.
Exp Parasitol ; 134(3): 389-99, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23541881

ABSTRACT

The parasite Toxoplasma gondii controls tissue-specific nitric oxide (NO), thereby augmenting virulence and immunopathology through poorly-understood mechanisms. We now identify TgMAPK1, a Toxoplasma mitogen-activated protein kinase (MAPK), as a virulence factor regulating tissue-specific parasite burden by manipulating host interferon (IFN)-γ-mediated inducible nitric oxide synthase (iNOS). Toxoplasma with reduced TgMAPK1 expression (TgMAPK1(lo)) demonstrated that TgMAPK1 facilitates IFN-γ-driven p38 MAPK activation, reducing IFN-γ-generated NO in an MKK3-dependent manner, blunting IFN-γ-mediated parasite control. TgMAPK1(lo) infection in wild type mice produced ≥ten-fold lower parasite burden versus control parasites with normal TgMAPK1 expression (TgMAPK1(con)). Reduced parasite burdens persisted in IFN-γ KO mice, but equalized in normally iNOS-replete organs from iNOS KO mice. Parasite MAPKs are far less studied than other parasite kinases, but deserve additional attention as targets for immunotherapy and drug discovery.


Subject(s)
Interferon-gamma/physiology , Mitogen-Activated Protein Kinase 1/physiology , Nitric Oxide/metabolism , Toxoplasma/enzymology , Toxoplasmosis, Animal/parasitology , Animals , Cell Line , Female , Gene Expression Regulation, Enzymologic , Humans , Liver/parasitology , Macrophages/parasitology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/genetics , Nitric Oxide Synthase Type II/metabolism , Spleen/parasitology , Toxoplasma/genetics , Toxoplasma/metabolism , Toxoplasma/pathogenicity , Toxoplasmosis, Animal/immunology , Virulence , Virulence Factors/genetics , Virulence Factors/physiology
14.
Drug Resist Updat ; 15(1-2): 106-13, 2012.
Article in English | MEDLINE | ID: mdl-22483359

ABSTRACT

Multidrug resistance (MDR) renders cancer cells relatively invulnerable to treatment with many standard cytotoxic anti-cancer agents. Cancer immunotherapy could be an important adjunct for other strategies to treat MDR positive cancers, as resistance to immunotherapy generally is unrelated to mechanisms of resistance to cytotoxic agents. Immunotherapy to combat MDR positive tumors could use any of the following strategies: direct immune attack against MDR positive cells, using MDR as an immune target to deliver cytotoxic agents, capitalization on other immune properties of MDR positive cells, or conditional immunotoxins expressed under MDR control. Additional insights into the immunogenic potential of some cytotoxic agents can also be brought to bear on these strategies. This review will highlight key concepts in cancer immunotherapy and illustrate immune principles and strategies that have been or could be used to help destroy MDR positive tumor cells, either alone or in rational combinations.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Immunotherapy/methods , Immunotoxins/therapeutic use , Neoplasms/therapy , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology , Adaptive Immunity/drug effects , Antibodies/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cytokines/therapeutic use , Humans , Immunity, Innate/drug effects , Neoplasms/immunology , Neoplasms/metabolism
15.
Cancer Immunol Res ; 11(11): 1449-1461, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37769157

ABSTRACT

Advances in cancer immunotherapy are improving treatment successes in many distinct cancer types. Nonetheless, most tumors fail to respond. Age is the biggest risk for most cancers, and the median population age is rising worldwide. Advancing age is associated with manifold alterations in immune cell types, abundance, and functions, rather than simple declines in these metrics, the consequences of which remain incompletely defined. Our understanding of the effects of host age on immunotherapy mechanisms, efficacy, and adverse events remains incomplete. A deeper understanding of age effects in all these areas is required. Most cancer immunotherapy preclinical studies examine young subjects and fail to assess age contributions, a remarkable deficit given the known importance of age effects on immune cells and factors mediating cancer immune surveillance and immunotherapy efficacy. Notably, some cancer immunotherapies are more effective in aged versus young hosts, while others fail despite efficacy in the young. Here, we review our current understanding of age effects on immunity and associated nonimmune cells, the tumor microenvironment, cancer immunotherapy, and related adverse effects. We highlight important knowledge gaps and suggest areas for deeper enquiries, including in cancer immune surveillance, treatment response, adverse event outcomes, and their mitigation.


Subject(s)
Aging , Neoplasms , Humans , Aged , Immunotherapy , Immunologic Surveillance , Treatment Outcome , Tumor Microenvironment
16.
J Immunol ; 184(11): 6151-60, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20427766

ABSTRACT

Both innate and adaptive immune systems are considered important for cancer prevention, immunosurveillance, and control of cancer progression. It is known that, although both systems initially eliminate emerging tumor cells efficiently, tumors eventually escape immune attack by a variety of mechanisms, including differentiation and recruitment of immunosuppressive CD11b(+)Gr-1(+) myeloid suppressor cells into the tumor microenvironment. However, we show that CD11b(+)Gr-1(+) cells found in ascites of epithelial ovarian cancer-bearing mice at advanced stages of disease are immunostimulatory rather than being immunosuppressive. These cells consist of a homogenous population of cells that morphologically resemble neutrophils. Moreover, like dendritic cells, immunostimulatory CD11b(+)Gr-1(+) cells can strongly cross-prime, augmenting the proliferation of functional CTLs via signaling through the expression of costimulatory molecule CD80. Adoptive transfer of these immunostimulatory CD11b(+)Gr-1(+) cells from ascites of ovarian cancer-bearing mice results in the significant regression of s.c. tumors even without being pulsed with exogenous tumor Ag prior to adoptive transfer. We now show for the first time that adaptive immune responses against cancer can be augmented by these cancer-induced granulocyte-like immunostimulatory myeloid (CD11b(+)Gr-1(+)) cells, thereby mediating highly effective antitumor immunity in an adoptive transfer model of immunity.


Subject(s)
CD11b Antigen/immunology , Cross-Priming/immunology , Myeloid Cells/immunology , Ovarian Neoplasms/immunology , Receptors, Chemokine/immunology , Adoptive Transfer , Animals , Antigens/immunology , Cell Separation , Female , Flow Cytometry , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology
17.
J Immunol ; 185(5): 2747-53, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20686128

ABSTRACT

CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are immunopathogenic in cancers by impeding tumor-specific immunity. B7-homologue 1 (B7-H1) (CD274) is a cosignaling molecule with pleiotropic effects, including hindering antitumor immunity. In this study, we demonstrate sex-dependent, B7-H1-dependent differences in tumor immunity and response to immunotherapy in a hormone-independent cancer, murine B16 melanoma. Antitumor immunity was better in B7-H1(-/-) females versus males as a result of reduced regulatory T cell function in the B7-H1(-/-) females, and clinical response following B7-H1 blockade as tumor immunotherapy was significantly better in wild-type females than in males, owing to greater B7-H1 blockade-mediated reduction of Treg function in females. Wild-type female Tregs expressed significantly lower B7-H1 versus males but were insensitive to estrogen in vitro. Female B7-H1(-/-) Tregs were exquisitely sensitive to estrogen-mediated functional reduction in vitro, suggesting that B7-H1 effects occur before terminal Treg differentiation. Immune differences were independent of known B7-H1 ligands. Sex-dependent immune differences are seldom considered in designing immune therapy or interpreting immunotherapy treatment results. Our data demonstrate that sex is an important variable in tumor immunopathogenesis and immunotherapy responses through differential Treg function and B7-H1 signaling.


Subject(s)
B7-1 Antigen/physiology , Immunotherapy, Adoptive/methods , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Membrane Glycoproteins/physiology , Peptides/physiology , Sex Characteristics , Animals , Antigens, Differentiation/physiology , B7-1 Antigen/genetics , B7-H1 Antigen , Cell Line, Tumor , Female , Immunity, Innate/genetics , Male , Melanoma, Experimental/physiopathology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Ovalbumin/biosynthesis , Ovalbumin/genetics , Ovalbumin/immunology , Peptides/deficiency , Peptides/genetics , Programmed Cell Death 1 Receptor , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology
18.
Cancer Discov ; 12(8): 1841-1843, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35929132

ABSTRACT

Much work has been done to reduce cancer immunosuppression through inhibiting soluble proteins, surface molecules, and suppressive cells. This article shows an important role for the lipid lysophosphatidic acid, whose suppression shows promise as a novel cancer immunotherapeutic, demonstrated in ovarian cancer. See related article by Chae et al., 1904 (5).


Subject(s)
Interferon Type I , Ovarian Neoplasms , Abdominal Fat/metabolism , Carcinoma, Ovarian Epithelial , Female , Humans , Lysophospholipids , Ovarian Neoplasms/metabolism
19.
Nat Rev Cancer ; 22(3): 174-189, 2022 03.
Article in English | MEDLINE | ID: mdl-35031777

ABSTRACT

The paradigm of surface-expressed programmed death ligand 1 (PDL1) signalling to immune cell programmed death 1 (PD1) to inhibit antitumour immunity has helped to develop effective and revolutionary immunotherapies using antibodies blocking these cell-extrinsic interactions. The recent discovery of cancer cell-intrinsic PDL1 signals has broadened understanding of pathologic tumour PDL1 signal consequences that now includes control of tumour growth and survival pathways, stemness, immune effects, DNA damage responses and gene expression regulation. Many such effects are PD1-independent. These insights demonstrate that the prevailing cell-extrinsic PDL1 signalling paradigm is useful, but incomplete in important respects. This Perspective discusses historical and recent advances in understanding cancer cell-intrinsic PDL1 signals, mechanisms for signal controls and important immunopathologic consequences including resistance to cytotoxic agents, targeted small molecules and immunotherapies. Cancer cell-intrinsic PDL1 signals present novel drug discovery targets and also have potential as reliable treatment response biomarkers. Cancer cell-intrinsic PD1 signals and cell-intrinsic PDL1 signals in non-cancer cells are discussed briefly, as are PDL1 signals from soluble and vesicle-bound PDL1 and PDL1 isoforms. We conclude with suggestions for addressing the most pressing challenges and opportunities in this rapidly developing field.


Subject(s)
B7-H1 Antigen , Neoplasms , Drug Discovery , Humans , Immunotherapy , Neoplasms/therapy
20.
Cell Syst ; 13(1): 71-82.e8, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34624253

ABSTRACT

Single-cell technologies allow characterization of cancer samples as continuous developmental trajectories. Yet, the obtained temporal resolution cannot be leveraged for a comparative analysis due to the large phenotypic heterogeneity existing between patients. Here, we present the tuMap algorithm that exploits high-dimensional single-cell data of cancer samples exhibiting an underlying developmental structure to align them with the healthy development, yielding the tuMap pseudotime axis that allows their systematic, meaningful comparison. We applied tuMap on single-cell mass cytometry data of acute lymphoblastic and myeloid leukemia to reveal associations between the tuMap pseudotime axis and clinics that outperform cellular assignment into developmental populations. Application of the tuMap algorithm on single-cell RNA sequencing data further identified gene signatures of stem cells residing at the very-early parts of the cancer trajectories. The quantitative framework provided by tuMap allows generation of metrics for cancer patients evaluation.


Subject(s)
Neoplasms , Single-Cell Analysis , Algorithms , Humans , Single-Cell Analysis/methods , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL