Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cytotherapy ; 26(4): 351-359, 2024 04.
Article in English | MEDLINE | ID: mdl-38349310

ABSTRACT

BACKGROUND AIMS: Traditional weight-based dosing of rabbit anti-thymocyte globulin (rATG) used in allogeneic hematopoietic cell transplantation (HCT) to prevent graft-versus-host disease (GVHD) and graft rejection leads to variable exposures. High exposures induce delayed CD4+immune reconstitution (CD4+IR) and greater mortality. We sought to determine the impact of rATG exposure in children and young adults receiving various types of EX-VIVO T-cell-depleted (EX-VIVO-TCD) HCT. METHODS: Patients receiving their first EX-VIVO-TCD HCT (CliniMACS CD34+, Isolex or soybean lectin agglutination), with removal of residual T cells by E-rosette depletion (E-) between 2008 and 2018 at Memorial Sloan Kettering Cancer Center were retrospectively analyzed. rATG exposure post-HCT was estimated (AU*d/L) using a validated population pharmacokinetic model. Previously defined rATG-exposures, <30, 30-55, ≥55 AU*d/L, were related with outcomes of interest. Cox proportional hazard and cause-specific models were used for analyses. RESULTS: In total, 180 patients (median age 11 years; range 0.1-44 years) were included, malignant 124 (69%) and nonmalignant 56 (31%). Median post-HCT rATG exposure was 32 (0-104) AU*d/L. Exposure <30 AU*d/L was associated with a 3-fold greater probability of CD4+IR (P < 0.001); 2- to 4-fold lower risk of death (P = 0.002); and 3- to 4-fold lower risk of non-relapse mortality (NRM) (P = 0.02). Cumulative incidence of NRM was 8-fold lower in patients who attained CD4+IR compared with those who did not (P < 0.0001). There was no relation between rATG exposure and aGVHD (P = 0.33) or relapse (P = 0.23). Effect of rATG exposure on outcomes was similar in three EX-VIVO-TCD methods. CONCLUSIONS: Individualizing rATG dosing to target a low rATG exposure post-HCT while maintaining total cumulative exposure may better predict CD4+IR, reduce NRM and increase overall survival, independent of the EX-VIVO-TCD method.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Child , Young Adult , Antilymphocyte Serum , Retrospective Studies , T-Lymphocytes , Hematopoietic Stem Cell Transplantation/adverse effects , Transplantation Conditioning
2.
Cytotherapy ; 26(5): 466-471, 2024 05.
Article in English | MEDLINE | ID: mdl-38430078

ABSTRACT

BACKGROUND AIMS: Daratumumab, a human IgG monoclonal antibody targeting CD38, is a promising treatment for pediatric patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL). We describe a case of delayed engraftment following a mismatched, unrelated donor hematopoietic stem cell transplant (HSCT) in a 14-year-old female with relapsed T-ALL, treated with daratumumab and chemotherapy. By Day 28 post-HSCT, the patient had no neutrophil engraftment but full donor myeloid chimerism. METHODS: We developed two novel, semi-quantitative, antibody-based assays to measure the patient's bound and plasma daratumumab levels to determine if prolonged drug exposure may have contributed to her slow engraftment. RESULTS: Daratumumab levels were significantly elevated more than 30 days after the patient's final infusion, and levels inversely correlated with her white blood cell counts. To clear daratumumab, the patient underwent several rounds of plasmapheresis and subsequently engrafted. CONCLUSIONS: This is the first report of both delayed daratumumab clearance and delayed stem cell engraftment following daratumumab treatment in a pediatric patient. Further investigation is needed to elucidate the optimal dosing of daratumumab for treatment of acute leukemias in pediatric populations as well as daratumumab's potential effects on hematopoietic stem cells and stem cell engraftment following allogenic HSCT.


Subject(s)
Antibodies, Monoclonal , Hematopoietic Stem Cell Transplantation , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/methods , Female , Antibodies, Monoclonal/therapeutic use , Adolescent , Transplantation, Homologous/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Graft Survival/drug effects
3.
Mol Ther ; 31(3): 801-809, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36518078

ABSTRACT

The clinical impact of any therapy requires the product be safe and effective. Gammaretroviral vectors pose several unique risks, including inadvertent exposure to replication competent retrovirus (RCR) that can arise during vector manufacture. The US FDA has required patient monitoring for RCR, and the National Gene Vector Biorepository is an NIH resource that has assisted eligible investigators in meeting this requirement. To date, we have found no evidence of RCR in 338 pre-treatment and 1,595 post-treatment blood samples from 737 patients associated with 60 clinical trials. Most samples (75%) were obtained within 1 year of treatment, and samples as far out as 9 years after treatment were analyzed. The majority of trials (93%) were cancer immunotherapy, and 90% of the trials used vector products produced with the PG13 packaging cell line. The data presented here provide further evidence that current manufacturing methods generate RCR-free products and support the overall safety profile of retroviral gene therapy.


Subject(s)
Retroviridae , Virus Replication , Humans , Retroviridae/genetics , Genetic Vectors/genetics , Cell Line , Genetic Therapy/adverse effects
4.
Blood ; 138(7): 531-543, 2021 08 19.
Article in English | MEDLINE | ID: mdl-33851211

ABSTRACT

CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has become a breakthrough treatment of patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, despite the high initial response rate, the majority of adult patients with B-ALL progress after CD19 CAR T-cell therapy. Data on the natural history, management, and outcome of adult B-ALL progressing after CD19 CAR T cells have not been described in detail. Herein, we report comprehensive data of 38 adult patients with B-ALL who progressed after CD19 CAR T therapy at our institution. The median time to progression after CAR T-cell therapy was 5.5 months. Median survival after post-CAR T progression was 7.5 months. A high disease burden at the time of CAR T-cell infusion was significantly associated with risk of post-CAR T progression. Thirty patients (79%) received salvage treatment of post-CAR T disease progression, and 13 patients (43%) achieved complete remission (CR), but remission duration was short. Notably, 7 (58.3%) of 12 patients achieved CR after blinatumomab and/or inotuzumab administered following post-CAR T failure. Multivariate analysis revealed that a longer remission duration from CAR T cells was associated with superior survival after progression following CAR T-cell therapy. In summary, overall prognosis of adult B-ALL patients progressing after CD19 CAR T cells was poor, although a subset of patients achieved sustained remissions to salvage treatments, including blinatumomab, inotuzumab, and reinfusion of CAR T cells. Novel therapeutic strategies are needed to reduce risk of progression after CAR T-cell therapy and improve outcomes of these patients.


Subject(s)
Antibodies, Bispecific/administration & dosage , Immunotherapy, Adoptive , Inotuzumab Ozogamicin/administration & dosage , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Salvage Therapy , Adult , Aged , Disease-Free Survival , Female , Humans , Male , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Survival Rate
5.
Blood ; 137(6): 848-855, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33150379

ABSTRACT

Acute graft-versus-host-Disease (aGVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). We previously showed that early CD4+ T-cell immune reconstitution (IR; CD4+ IR) predicts survival after HCT. Here, we studied the relation between CD4+ IR and survival in patients developing aGVHD. Pediatric patients undergoing first allogeneic HCT at University Medical Center Utrecht (UMC)/Princess Máxima Center (PMC) or Memorial Sloan Kettering Cancer Center (MSK) were included. Primary outcomes were nonrelapse mortality (NRM) and overall survival (OS), stratified for aGVHD and CD4+ IR, defined as ≥50 CD4+ T cells per µL within 100 days after HCT or before aGVHD onset. Multivariate and time-to-event Cox proportional hazards models were applied, and 591 patients (UMC/PMC, n = 276; MSK, n = 315) were included. NRM in patients with grade 3 to 4 aGVHD with or without CD4+ IR within 100 days after HCT was 30% vs 80% (P = .02) at UMC/PMC and 5% vs 67% (P = .02) at MSK. This was associated with lower OS without CD4+ IR (UMC/PMC, 61% vs 20%; P = .04; MSK, 75% vs 33%; P = .12). Inadequate CD4+ IR before aGVHD onset was associated with significantly higher NRM (74% vs 12%; P < .001) and inferior OS (24% vs 78%; P < .001). In this retrospective analysis, we demonstrate that early CD4+ IR, a simple and robust marker predictive of outcomes after HCT, is associated with survival after moderate to severe aGVHD. This association must be confirmed prospectively but suggests strategies to improve T-cell recovery after HCT may influence survival in patients developing aGVHD.


Subject(s)
CD4 Lymphocyte Count , CD4-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Immune Reconstitution , Acute Disease , Adolescent , Allografts , Child , Child, Preschool , Female , Follow-Up Studies , Graft vs Host Disease/mortality , Humans , Infant , Kaplan-Meier Estimate , Male , Proportional Hazards Models , Retrospective Studies , Severity of Illness Index , Treatment Outcome , Young Adult
6.
Sensors (Basel) ; 22(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35336401

ABSTRACT

Data gloves capable of measuring finger joint kinematics can provide objective range of motion information useful for clinical hand assessment and rehabilitation. Data glove sensors are strategically placed over specific finger joints to detect movement of the wearers' hand. The construction of the sensors used in a data glove, the number of sensors used, and their positioning on each finger joint are influenced by the intended use case. Although most glove sensors provide reasonably stable linear output, this stability is influenced externally by the physical structure of the data glove sensors, as well as the wearer's hand size relative to the data glove, and the elastic nature of materials used in its construction. Data gloves typically require a complex calibration method before use. Calibration may not be possible when wearers have disabled hands or limited joint flexibility, and so limits those who can use a data glove within a clinical context. This paper examines and describes a unique approach to calibration and angular calculation using a neural network that improves data glove repeatability and accuracy measurements without the requirement for data glove calibration. Results demonstrate an overall improvement in data glove measurements. This is particularly relevant when the data glove is used with those who have limited joint mobility and cannot physically complete data glove calibration.


Subject(s)
Finger Joint , Hand , Biomechanical Phenomena , Neural Networks, Computer , Range of Motion, Articular
7.
N Engl J Med ; 378(5): 449-459, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29385376

ABSTRACT

BACKGROUND: CD19-specific chimeric antigen receptor (CAR) T cells induce high rates of initial response among patients with relapsed B-cell acute lymphoblastic leukemia (ALL) and long-term remissions in a subgroup of patients. METHODS: We conducted a phase 1 trial involving adults with relapsed B-cell ALL who received an infusion of autologous T cells expressing the 19-28z CAR at the Memorial Sloan Kettering Cancer Center (MSKCC). Safety and long-term outcomes were assessed, as were their associations with demographic, clinical, and disease characteristics. RESULTS: A total of 53 adults received 19-28z CAR T cells that were manufactured at MSKCC. After infusion, severe cytokine release syndrome occurred in 14 of 53 patients (26%; 95% confidence interval [CI], 15 to 40); 1 patient died. Complete remission was observed in 83% of the patients. At a median follow-up of 29 months (range, 1 to 65), the median event-free survival was 6.1 months (95% CI, 5.0 to 11.5), and the median overall survival was 12.9 months (95% CI, 8.7 to 23.4). Patients with a low disease burden (<5% bone marrow blasts) before treatment had markedly enhanced remission duration and survival, with a median event-free survival of 10.6 months (95% CI, 5.9 to not reached) and a median overall survival of 20.1 months (95% CI, 8.7 to not reached). Patients with a higher burden of disease (≥5% bone marrow blasts or extramedullary disease) had a greater incidence of the cytokine release syndrome and neurotoxic events and shorter long-term survival than did patients with a low disease burden. CONCLUSIONS: In the entire cohort, the median overall survival was 12.9 months. Among patients with a low disease burden, the median overall survival was 20.1 months and was accompanied by a markedly lower incidence of the cytokine release syndrome and neurotoxic events after 19-28z CAR T-cell infusion than was observed among patients with a higher disease burden. (Funded by the Commonwealth Foundation for Cancer Research and others; ClinicalTrials.gov number, NCT01044069 .).


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Receptors, Antigen, T-Cell/therapeutic use , T-Lymphocytes/immunology , Adult , Aged , Cytokines/metabolism , Follow-Up Studies , Humans , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Recurrence , Remission Induction , Survival Analysis
8.
Blood ; 134(7): 626-635, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31262783

ABSTRACT

High-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT) is the standard of care for relapsed or primary refractory (rel/ref) chemorefractory diffuse large B-cell lymphoma. Only 50% of patients are cured with this approach. We investigated safety and efficacy of CD19-specific chimeric antigen receptor (CAR) T cells administered following HDT-ASCT. Eligibility for this study includes poor-risk rel/ref aggressive B-cell non-Hodgkin lymphoma chemosensitive to salvage therapy with: (1) positron emission tomography-positive disease or (2) bone marrow involvement. Patients underwent standard HDT-ASCT followed by 19-28z CAR T cells on days +2 and +3. Of 15 subjects treated on study, dose-limiting toxicity was observed at both dose levels (5 × 106 and 1 × 107 19-28z CAR T per kilogram). Ten of 15 subjects experienced CAR T-cell-induced neurotoxicity and/or cytokine release syndrome (CRS), which were associated with greater CAR T-cell persistence (P = .05) but not peak CAR T-cell expansion. Serum interferon-γ elevation (P < .001) and possibly interleukin-10 (P = .07) were associated with toxicity. The 2-year progression-free survival (PFS) is 30% (95% confidence interval, 20% to 70%).  Subjects given decreased naive-like (CD45RA+CCR7+) CD4+ and CD8+ CAR T cells experienced superior PFS (P = .02 and .04, respectively). There was no association between CAR T-cell peak expansion, persistence, or cytokine changes and PFS. 19-28z CAR T cells following HDT-ASCT were associated with a high incidence of reversible neurotoxicity and CRS. Following HDT-ASCT, effector CD4+ and CD8+ immunophenotypes may improve disease control. This trial was registered at www.clinicaltrials.gov as #NCT01840566.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphoma, Large B-Cell, Diffuse/therapy , Receptors, Antigen, T-Cell/therapeutic use , Stem Cell Transplantation/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/therapy , Transplantation, Autologous/methods , Treatment Outcome
9.
Blood ; 134(26): 2361-2368, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31650176

ABSTRACT

Chimeric antigen receptor (CAR) T cells have demonstrated clinical benefit in patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). We undertook a multicenter clinical trial to determine toxicity, feasibility, and response for this therapy. A total of 25 pediatric/young adult patients (age, 1-22.5 years) with R/R B-ALL were treated with 19-28z CAR T cells. Conditioning chemotherapy included high-dose (3 g/m2) cyclophosphamide (HD-Cy) for 17 patients and low-dose (≤1.5 g/m2) cyclophosphamide (LD-Cy) for 8 patients. Fifteen patients had pretreatment minimal residual disease (MRD; <5% blasts in bone marrow), and 10 patients had pretreatment morphologic evidence of disease (≥5% blasts in bone marrow). All toxicities were reversible, including severe cytokine release syndrome in 16% (4 of 25) and severe neurotoxicity in 28% (7 of 25) of patients. Treated patients were assessed for response, and, among the evaluable patients (n = 24), response and peak CAR T-cell expansion were superior in the HD-Cy/MRD cohorts, as compared with the LD-Cy/morphologic cohorts without an increase in toxicity. Our data support the safety of CD19-specific CAR T-cell therapy for R/R B-ALL. Our data also suggest that dose intensity of conditioning chemotherapy and minimal pretreatment disease burden have a positive impact on response without a negative effect on toxicity. This trial was registered at www.clinicaltrials.gov as #NCT01860937.


Subject(s)
Antigens, CD19/metabolism , Drug Resistance, Neoplasm , Neoplasm Recurrence, Local/therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/transplantation , Adolescent , Adult , Child , Child, Preschool , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/prevention & control , Female , Humans , Infant , Male , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/metabolism , Neoplasm, Residual/etiology , Neoplasm, Residual/pathology , Neoplasm, Residual/prevention & control , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/prevention & control , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Salvage Therapy , Survival Rate , T-Lymphocytes/immunology , Treatment Outcome , Young Adult
10.
Sensors (Basel) ; 21(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668101

ABSTRACT

Capturi ng hand motions for hand function evaluations is essential in the medical field. For many allied health professionals, measuring joint range of motion (ROM) is an important skill. While the universal goniometer (UG) is the most used clinical tool for measuring joint ROM, developments in current sensor technology are providing clinicians with more measurement possibilities than ever. For rehabilitation and manual dexterity evaluations, different data gloves have been developed. However, the reliability and validity of sensor technologies when used within a smart device remain somewhat unclear. This study proposes a novel electronically controlled sensor monitoring system (ECSMS) to obtain the static and dynamic parameters of various sensor technologies for both data gloves and individual sensor evaluation. Similarly, the ECSMS was designed to closely mimic a human finger joint, to have total control over the joint, and to have an exceptionally high precision. In addition, the ECSMS device can closely mimic the movements of the finger from hyperextension to a maximum ROM beyond any person's finger joint. Due to the modular design, the ECSMS's sensor monitoring board is independent and extensible to include various technologies for examination. Additionally, by putting these sensory devices through multiple tests, the system accurately measures the characteristics of any rotary/linear sensor in and out of a glove. Moreover, the ECSMS tracks the movement of all types of sensors with respect to the angle values of finger joints. In order to demonstrate the effectiveness of sensory devices, the ECSMS was first validated against a recognised secondary device with an accuracy and resolution of 0.1°. Once validated, the system simultaneously determines real angles alongside the hand monitoring device or sensor. Due to its unique design, the system is independent of the gloves/sensors that were tested and can be used as a gold standard to realise more medical equipment/applications in the future. Consequently, this design greatly enhances testing measures within research contact and even non-contact systems. In conclusion, the ECSMS will benefit in the design of data glove technologies in the future because it provides crucial evidence of sensor characteristics. Similarly, this design greatly enhances the stability and maintainability of sensor assessments by eliminating unwanted errors. These findings provide ample evidence for clinicians to support the use of sensory devices that can calculate joint motion in place of goniometers.


Subject(s)
Gloves, Protective , Hand , Range of Motion, Articular , Smart Materials , Humans , Reproducibility of Results , Technology
11.
Sensors (Basel) ; 21(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668234

ABSTRACT

Early detection of Rheumatoid Arthritis (RA) and other neurological conditions is vital for effective treatment. Existing methods of detecting RA rely on observation, questionnaires, and physical measurement, each with their own weaknesses. Pharmaceutical medications and procedures aim to reduce the debilitating effect, preventing the progression of the illness and bringing the condition into remission. There is still a great deal of ambiguity around patient diagnosis, as the difficulty of measurement has reduced the importance that joint stiffness plays as an RA identifier. The research areas of medical rehabilitation and clinical assessment indicate high impact applications for wearable sensing devices. As a result, the overall aim of this research is to review current sensor technologies that could be used to measure an individual's RA severity. Other research teams within RA have previously developed objective measuring devices to assess the physical symptoms of hand steadiness through to joint stiffness. Unfamiliar physical effects of these sensory devices restricted their introduction into clinical practice. This paper provides an updated review among the sensor and glove types proposed in the literature to assist with the diagnosis and rehabilitation activities of RA. Consequently, the main goal of this paper is to review contact systems and to outline their potentialities and limitations. Considerable attention has been paid to gloved based devices as they have been extensively researched for medical practice in recent years. Such technologies are reviewed to determine whether they are suitable measuring tools.


Subject(s)
Arthritis, Rheumatoid , Wearable Electronic Devices , Arthritis, Rheumatoid/diagnosis , Gloves, Protective , Hand , Humans
12.
Cytotherapy ; 22(9): 503-510, 2020 09.
Article in English | MEDLINE | ID: mdl-32622752

ABSTRACT

BACKGROUND: An association between early CD4+ T cell immune reconstitution (CD4+ IR) and survival after T-replete allogeneic hematopoietic cell transplantation (HCT) has been previously reported. Here we report validation of this relationship in a separate cohort that included recipients of ex vivo T-cell-depleted (TCD) HCT. We studied the relationship between CD4+ IR and clinical outcomes. METHODS: A retrospective analysis of children/young adults receiving their first allogeneic HCT for any indication between January 2008 and December 2017 was performed. We related early CD4+ IR (defined as achieving >50 CD4+ T cells/µL on two consecutive measures within 100 days of HCT) to overall survival (OS), relapse, non-relapse mortality (NRM), event-free survival (EFS) and acute graft-versus-host disease (aGVHD). Fine and Gray competing risk models and Cox proportional hazard models were used. RESULTS: In this analysis, 315 patients with a median age of 10.4 years (interquartile range 5.0-16.5 years) were included. The cumulative incidence of CD4+ IR at 100 days was 66.7% in the entire cohort, 54.7% in TCD (N = 208, hazard ratio [HR] 0.47, P < 0.001), 90.0% in uCB (N = 40) and 89.6% in T-replete (N = 47) HCT recipients. In multi-variate analyses, not achieving early CD4+ IR was a predictor of inferior OS (HR 2.35, 95% confidence interval [CI] 1.46-3.79, P < 0.001) and EFS (HR 1.80, 95% CI 1.20-2.69, P = 0.004) and increased NRM (HR 6.58, 95% CI 2.82-15.38, P < 0.001). No impact of CD4+ IR on relapse or aGVHD was found. Within the TCD group, similar associations were observed. CONCLUSION: In this HCT cohort, including recipients of TCD HCT, we confirmed that early CD4+ IR was an excellent predictor of outcomes. Finding strategies to predict or improve CD4+ IR may influence outcomes.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Immune Reconstitution , Adolescent , Child , Child, Preschool , Cohort Studies , Disease-Free Survival , Female , Graft vs Host Disease/immunology , Humans , Male , Multivariate Analysis , Proportional Hazards Models , Retrospective Studies , Transplantation, Homologous , Treatment Outcome
13.
Biol Blood Marrow Transplant ; 25(4): 625-638, 2019 04.
Article in English | MEDLINE | ID: mdl-30592986

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy is rapidly emerging as one of the most promising therapies for hematologic malignancies. Two CAR T products were recently approved in the United States and Europe for the treatment ofpatients up to age 25years with relapsed or refractory B cell acute lymphoblastic leukemia and/or adults with large B cell lymphoma. Many more CAR T products, as well as other immunotherapies, including various immune cell- and bi-specific antibody-based approaches that function by activation of immune effector cells, are in clinical development for both hematologic and solid tumor malignancies. These therapies are associated with unique toxicities of cytokine release syndrome (CRS) and neurologic toxicity. The assessment and grading of these toxicities vary considerably across clinical trials and across institutions, making it difficult to compare the safety of different products and hindering the ability to develop optimal strategies for management of these toxicities. Moreover, some aspects of these grading systems can be challenging to implement across centers. Therefore, in an effort to harmonize the definitions and grading systems for CRS and neurotoxicity, experts from all aspects of the field met on June 20 and 21, 2018, at a meeting supported by the American Society for Transplantation and Cellular Therapy (ASTCT; formerly American Society for Blood and Marrow Transplantation, ASBMT) in Arlington, VA. Here we report the consensus recommendations of that group and propose new definitions and grading for CRS and neurotoxicity that are objective, easy to apply, and ultimately more accurately categorize the severity of these toxicities. The goal is to provide a uniform consensus grading system for CRS and neurotoxicity associated with immune effector cell therapies, for use across clinical trials and in the postapproval clinical setting.


Subject(s)
Cytokine Release Syndrome/therapy , Immunotherapy/methods , Receptors, Antigen, T-Cell/therapeutic use , Cytokine Release Syndrome/pathology , Guidelines as Topic , Humans
16.
Biol Blood Marrow Transplant ; 24(6): 1135-1141, 2018 06.
Article in English | MEDLINE | ID: mdl-29499327

ABSTRACT

Two commercial chimeric antigen receptor (CAR) T cell therapies for CD19-expressing B cell malignancies, Kymriah and Yescarta, have recently been approved by the Food and Drug Administration. The administration of CAR T cells is a complex endeavor involving cell manufacture, tracking and shipping of apheresis products, and management of novel and severe toxicities. At Memorial Sloan Kettering Cancer Center, we have identified 8 essential tasks that define the CAR T cell workflow. In this review, we discuss practical aspects of CAR T cell program development, including clinical, administrative, and regulatory challenges for successful implementation.


Subject(s)
Cancer Care Facilities/organization & administration , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen , Workflow , Antigens, CD19/therapeutic use , Biological Products , Humans , Leukemia, B-Cell/therapy , Lymphoma, B-Cell/therapy , Receptors, Antigen, T-Cell/therapeutic use , Receptors, Chimeric Antigen/therapeutic use
18.
Pediatr Blood Cancer ; 65(8): e27218, 2018 08.
Article in English | MEDLINE | ID: mdl-29722478

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is an extremely rare cause of bone marrow failure in children. We report two children who presented with pancytopenia, and were diagnosed with PNH with severe aplastic anemia. Both children underwent upfront, successful hematopoietic stem cell transplantation with reduced-intensity conditioning. One patient had a syngeneic donor, and one patient had a 10/10 matched unrelated donor. Neither patient developed graft versus host disease, infections, or recurrent PNH. Reduced-intensity conditioning hematopoietic stem cell transplantation is a reasonable therapy for PNH with marrow failure in children.


Subject(s)
Anemia, Aplastic/therapy , Hematopoietic Stem Cell Transplantation , Hemoglobinuria, Paroxysmal/therapy , Transplantation Conditioning , Adolescent , Humans , Male
19.
J Pediatr Hematol Oncol ; 40(4): e220-e224, 2018 05.
Article in English | MEDLINE | ID: mdl-29432302

ABSTRACT

BACKGROUND: The combination of cyclophosphamide (CY) and antithymocyte globulin (ATG) has been used as a standard conditioning regimen for matched related donor transplantation in patients with severe aplastic anemia. PROCEDURE: To decrease the regimen-related toxicity while maintaining appropriate engraftment and survival rates, fludarabine (FLU) was added to the regimen. Four pediatric patients received matched related donor bone marrow transplantation with CY (50 mg/kg×2) (instead of the 50 mg/kg×4 standard dosing), equine ATG (30 mg/kg×3), with the addition of FLU (30 mg/m×4). Graft versus host disease (GvHD) prophylaxis included a calcineurin inhibitor and methotrexate. RESULTS: No grade 4 acute toxicities occurred during the first 30 days after transplant. All patients engrafted with normalization of peripheral blood counts and transfusion independence. One patient developed grade 1 to 2 acute GvHD, followed by chronic GvHD that resolved. With a median follow-up of 41.7 months, all 4 patients are alive and transfusion free, with complete donor chimerism. This combination of a low-dose CY/ATG+FLU regimen was overall very well tolerated and contributed toward a successful outcome including engraftment, chimerism, and survival. CONCLUSION: This small pilot study shows that this cytoreductive regimen could be considered as the standard of care for transplantation of pediatric patients with aplastic anemia from HLA-matched siblings.


Subject(s)
Anemia, Aplastic/therapy , Antilymphocyte Serum/administration & dosage , Bone Marrow Transplantation , Cyclophosphamide/administration & dosage , Tissue Donors , Vidarabine/analogs & derivatives , Adolescent , Adult , Allografts , Anemia, Aplastic/mortality , Child , Disease-Free Survival , Female , Follow-Up Studies , Graft Survival/drug effects , Humans , Male , Severity of Illness Index , Survival Rate , Vidarabine/administration & dosage
20.
Mol Ther ; 23(4): 769-78, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25582824

ABSTRACT

Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40(+) tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40(+) tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19(+) systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy.


Subject(s)
CD40 Ligand/metabolism , Immunotherapy , Lymphoma, Follicular/therapy , Recombinant Fusion Proteins/metabolism , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Heterografts , Humans , Immunophenotyping , Lymphoma, Follicular/immunology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL