Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Behav Genet ; 40(6): 759-67, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20306291

ABSTRACT

Childhood general cognitive ability (g) is important for a wide range of outcomes in later life, from school achievement to occupational success and life expectancy. Large-scale association studies will be essential in the quest to identify variants that make up the substantial genetic component implicated by quantitative genetic studies. We conducted a three-stage genome-wide association study for general cognitive ability using over 350,000 single nucleotide polymorphisms (SNPs) in the quantitative extremes of a population sample of 7,900 7-year-old children from the UK Twins Early Development Study. Using two DNA pooling stages to enrich true positives, each of around 1,000 children selected from the extremes of the distribution, and a third individual genotyping stage of over 3,000 children to test for quantitative associations across the normal range, we aimed to home in on genes of small effect. Genome-wide results suggested that our approach was successful in enriching true associations and 28 SNPs were taken forward to individual genotyping in an unselected population sample. However, although we found an enrichment of low P values and identified nine SNPs nominally associated with g (P < 0.05) that show interesting characteristics for follow-up, further replication will be necessary to meet rigorous standards of association. These replications may take advantage of SNP sets to overcome limitations of statistical power. Despite our large sample size and three-stage design, the genes associated with childhood g remain tantalizingly beyond our current reach, providing further evidence for the small effect sizes of individual loci. Larger samples, denser arrays and multiple replications will be necessary in the hunt for the genetic variants that influence human cognitive ability.


Subject(s)
Genome-Wide Association Study , Intelligence/genetics , Polymorphism, Single Nucleotide/genetics , Twins/genetics , England , Genotype , Humans , Sampling Studies , Wales
2.
J Child Psychol Psychiatry ; 51(7): 780-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20345837

ABSTRACT

BACKGROUND: Quantitative genetic data from our group indicates that antisocial behaviour (AB) is strongly heritable when coupled with psychopathic, callous-unemotional (CU) personality traits. We have also demonstrated that the genetic influences for AB and CU overlap considerably. We conducted a genome-wide association scan that capitalises on these findings in an attempt to identify quantitative trait loci (QTLs) that may increase risk for psychopathic tendencies (AB+/CU+). METHODS: Teacher ratings at age 7 were used to screen 8374 twins with available DNA samples for individuals that were high vs. low on both AB and CU. In Stage 1, we screened for allele frequency differences in 642,432 autosomal single-nucleotide polymorphisms (SNPs) using the Affymetrix 6.0 GeneChip with pooled DNA for high-scoring (AB+/CU+) versus low-scoring children (N = approximately 300/group). In Stage 2, we tested the 3000 most strongly associated SNPs from Stage 1 for association in the same direction in a second sample of high- versus low-scoring children from the same twin study (18% co-twins). RESULTS: Using allele frequencies estimated from pooled DNA, we found suggestive evidence for enrichment of association in the second stage of our two-stage genome-wide association design and focus on reporting the 30 top-ranking SNPs nominally associated with psychopathic tendencies. These SNPs include neurodevelopmental genes such as ROBO2. CONCLUSIONS: Although none of the SNPs reached genome-wide statistical significance we have generated a list of SNPs that are potentially associated with psychopathic tendencies, which we believe warrant verification and replication in large independent and clinical samples.


Subject(s)
Antisocial Personality Disorder/genetics , Diseases in Twins/genetics , Genome-Wide Association Study , Genotype , Social Environment , Alleles , Antisocial Personality Disorder/psychology , Child , Conduct Disorder/genetics , Conduct Disorder/psychology , Diseases in Twins/psychology , England , Female , Gene Frequency/genetics , Genetic Markers/genetics , Genetic Testing , Humans , Male , Personality Assessment/statistics & numerical data , Polymorphism, Single Nucleotide/genetics , Psychometrics , Quantitative Trait Loci/genetics , Wales
3.
Nat Commun ; 5: 4204, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25003214

ABSTRACT

Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children's ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child's cognitive abilities at age twelve.


Subject(s)
Dyslexia/genetics , Genetics, Population , Mathematics , Quantitative Trait, Heritable , Reading , Twins/genetics , Child , Dyslexia/psychology , Female , Genome-Wide Association Study , Humans , Learning , Male , Polymorphism, Single Nucleotide , Twins/psychology , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL