Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Mol Cell ; 79(2): 342-358.e12, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32645368

ABSTRACT

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.


Subject(s)
Calcineurin/metabolism , Nuclear Pore Complex Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Active Transport, Cell Nucleus , Amino Acid Motifs , Biotinylation , Centrosome/metabolism , Computer Simulation , HEK293 Cells , HeLa Cells , Humans , Mass Spectrometry , Phosphoric Monoester Hydrolases/chemistry , Phosphorylation , Protein Interaction Maps , Proteome/metabolism , Receptor, Notch1/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
2.
Nature ; 582(7811): 271-276, 2020 06.
Article in English | MEDLINE | ID: mdl-32499640

ABSTRACT

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Subject(s)
Calcineurin/metabolism , Cell Proliferation , Homeodomain Proteins/metabolism , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Myocytes, Cardiac/cytology , Animals , Animals, Newborn , Female , Gene Deletion , Gene Expression Regulation , Heart/physiology , Homeodomain Proteins/genetics , Male , Mice , Myocardium/cytology , Protein Binding , Regeneration
3.
J Cell Sci ; 136(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-37013443

ABSTRACT

Calcineurin, or protein phosphatase 2B (PP2B), the Ca2+ and calmodulin-activated phosphatase and target of immunosuppressants, has many substrates and functions that remain uncharacterized. By combining rapid proximity-dependent labeling with cell cycle synchronization, we mapped the spatial distribution of calcineurin in different cell cycle stages. While calcineurin-proximal proteins did not vary significantly between interphase and mitosis, calcineurin consistently associated with multiple centrosomal and/or ciliary proteins. These include POC5, which binds centrins in a Ca2+-dependent manner and is a component of the luminal scaffold that stabilizes centrioles. We show that POC5 contains a calcineurin substrate motif (PxIxIT type) that mediates calcineurin binding in vivo and in vitro. Using indirect immunofluorescence and ultrastructure expansion microscopy, we demonstrate that calcineurin colocalizes with POC5 at the centriole, and further show that calcineurin inhibitors alter POC5 distribution within the centriole lumen. Our discovery that calcineurin directly associates with centriolar proteins highlights a role for Ca2+ and calcineurin signaling at these organelles. Calcineurin inhibition promotes elongation of primary cilia without affecting ciliogenesis. Thus, Ca2+ signaling within cilia includes previously unknown functions for calcineurin in maintenance of cilia length, a process that is frequently disrupted in ciliopathies.


Subject(s)
Calcineurin , Cilia , Calcineurin/metabolism , Cilia/metabolism , Calcium/metabolism , Centrosome/metabolism , Centrioles/metabolism , Proteins/metabolism
4.
Mol Cell ; 55(3): 422-435, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24930733

ABSTRACT

To define a functional network for calcineurin, the conserved Ca(2+)/calmodulin-regulated phosphatase, we systematically identified its substrates in S. cerevisiae using phosphoproteomics and bioinformatics, followed by copurification and dephosphorylation assays. This study establishes new calcineurin functions and reveals mechanisms that shape calcineurin network evolution. Analyses of closely related yeasts show that many proteins were recently recruited to the network by acquiring a calcineurin-recognition motif. Calcineurin substrates in yeast and mammals are distinct due to network rewiring but, surprisingly, are phosphorylated by similar kinases. We postulate that corecognition of conserved substrate features, including phosphorylation and docking motifs, preserves calcineurin-kinase opposition during evolution. One example we document is a composite docking site that confers substrate recognition by both calcineurin and MAPK. We propose that conserved kinase-phosphatase pairs define the architecture of signaling networks and allow other connections between kinases and phosphatases to develop that establish common regulatory motifs in signaling networks.


Subject(s)
Calcineurin/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Motifs , Amino Acid Sequence , Binding Sites/physiology , Calcineurin/chemistry , Calcineurin/genetics , Conserved Sequence , Evolution, Molecular , Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases/metabolism , Molecular Docking Simulation , Phosphorylation , Phylogeny , Proteomics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Substrate Specificity
5.
J Biol Chem ; 292(40): 16709-16721, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28842480

ABSTRACT

Calcineurin, the conserved Ca2+/calmodulin-regulated phosphatase and target of immunosuppressants, plays important roles in the circulatory, nervous, and immune systems. Calcineurin activity strictly depends on Ca2+ and Ca2+-bound calmodulin (Ca2+/CaM) to relieve autoinhibition of the catalytic subunit (CNA) by its C terminus. The C terminus contains two regulatory domains, the autoinhibitory domain (AID) and calmodulin-binding domain (CBD), which block the catalytic center and a conserved substrate-binding groove, respectively. However, this mechanism cannot apply to CNAß1, an atypical CNA isoform generated by alternative 3'-end processing, whose divergent C terminus shares the CBD common to all isoforms, but lacks the AID. We present the first biochemical characterization of CNAß1, which is ubiquitously expressed and conserved in vertebrates. We identify a distinct C-terminal autoinhibitory four-residue sequence in CNAß1, 462LAVP465, which competitively inhibits substrate dephosphorylation. In vitro and cell-based assays revealed that the CNAß1-containing holoenzyme, CNß1, is autoinhibited at a single site by either of two inhibitory regions, CBD and LAVP, which block substrate access to the substrate-binding groove. We found that the autoinhibitory segment (AIS), located within the CBD, is progressively removed by Ca2+ and Ca2+/CaM, whereas LAVP remains engaged. This regulatory strategy conferred higher basal and Ca2+-dependent activity to CNß1, decreasing its dependence on CaM, but also limited maximal enzyme activity through persistence of LAVP-mediated autoinhibiton during Ca2+/CaM stimulation. These regulatory properties may underlie observed differences between the biological activities of CNß1 and canonical CNß2. Our insights lay the groundwork for further studies of CNß1, whose physiological substrates are currently unknown.


Subject(s)
Calcineurin/metabolism , Calcium/metabolism , Calmodulin/metabolism , Calcineurin/chemistry , Calcineurin/genetics , Calcium/chemistry , Calmodulin/chemistry , Calmodulin/genetics , Humans , Phosphorylation/physiology , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Saccharomyces cerevisiae
6.
Mol Cell ; 33(5): 616-26, 2009 Mar 13.
Article in English | MEDLINE | ID: mdl-19285944

ABSTRACT

The phosphatase calcineurin, a target of the immunosuppressants cyclosporin A and FK506, dephosphorylates NFAT transcription factors to promote immune activation and development of the vascular and nervous systems. NFAT interacts with calcineurin through distinct binding motifs: the PxIxIT and LxVP sites. Although many calcineurin substrates contain PxIxIT motifs, the generality of LxVP-mediated interactions is unclear. We define critical residues in the LxVP motif, and we demonstrate its binding to a hydrophobic pocket at the interface of the two calcineurin subunits. Mutations in this region disrupt binding of mammalian calcineurin to NFATC1 and the interaction of yeast calcineurin with substrates including Rcn1, which contains an LxVP motif. These mutations also interfere with calcineurin-immunosuppressant binding, and an LxVP-based peptide competes with immunosuppressant-immunophilin complexes for binding to calcineurin. These studies suggest that LxVP-type sites are a common feature of calcineurin substrates, and that immunosuppressant-immunophilin complexes inhibit calcineurin by interfering with this mode of substrate recognition.


Subject(s)
Calcineurin/metabolism , Immunosuppressive Agents/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Calcineurin/chemistry , Calcineurin/genetics , Calcineurin Inhibitors , Cloning, Molecular , Computer Simulation , Conserved Sequence , Genes, Reporter , Humans , Hydrophobic and Hydrophilic Interactions , Immunophilins/metabolism , Immunosuppressive Agents/pharmacology , Intracellular Signaling Peptides and Proteins , Jurkat Cells , Mice , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , NFATC Transcription Factors/metabolism , Peptides/metabolism , Protein Conformation , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Surface Properties , Tacrolimus Binding Protein 1A/metabolism , Transcription, Genetic , Transfection
7.
PLoS Biol ; 11(2): e1001492, 2013.
Article in English | MEDLINE | ID: mdl-23468591

ABSTRACT

Ser/thr phosphatases dephosphorylate their targets with high specificity, yet the structural and sequence determinants of phosphosite recognition are poorly understood. Calcineurin (CN) is a conserved Ca(2+)/calmodulin-dependent ser/thr phosphatase and the target of immunosuppressants, FK506 and cyclosporin A (CSA). To investigate CN substrate recognition we used X-ray crystallography, biochemistry, modeling, and in vivo experiments to study A238L, a viral protein inhibitor of CN. We show that A238L competitively inhibits CN by occupying a critical substrate recognition site, while leaving the catalytic center fully accessible. Critically, the 1.7 Å structure of the A238L-CN complex reveals how CN recognizes residues in A238L that are analogous to a substrate motif, "LxVP." The structure enabled modeling of a peptide substrate bound to CN, which predicts substrate interactions beyond the catalytic center. Finally, this study establishes that "LxVP" sequences and immunosuppressants bind to the identical site on CN. Thus, FK506, CSA, and A238L all prevent "LxVP"-mediated substrate recognition by CN, highlighting the importance of this interaction for substrate dephosphorylation. Collectively, this work presents the first integrated structural model for substrate selection and dephosphorylation by CN and lays the groundwork for structure-based development of new CN inhibitors.


Subject(s)
Calcineurin Inhibitors , Immunosuppressive Agents/pharmacology , Crystallography, X-Ray , Cyclosporine/chemistry , Cyclosporine/pharmacology , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/classification , Tacrolimus/pharmacology , Viral Proteins/chemistry , Viral Proteins/pharmacology
8.
Cell Commun Signal ; 13: 43, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26589632

ABSTRACT

Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution - the evolution of a novel SLiM from "nothing" - adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.


Subject(s)
Evolution, Molecular , Protein Interaction Domains and Motifs , Proteins/genetics , Proteins/metabolism , Amino Acid Motifs , Animals , Computational Biology , DNA/chemistry , DNA/metabolism , Humans , Models, Theoretical , Proteins/chemistry , RNA, Messenger/chemistry , RNA, Messenger/metabolism
9.
J Biol Chem ; 288(33): 24063-80, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23824189

ABSTRACT

Proper regulation of plasma membrane protein endocytosis by external stimuli is required for cell growth and survival. In yeast, excess levels of certain nutrients induce endocytosis of the cognate permeases to prevent toxic accumulation of metabolites. The α-arrestins, a family of trafficking adaptors, stimulate ubiquitin-dependent and clathrin-mediated endocytosis by interacting with both a client permease and the ubiquitin ligase Rsp5. However, the molecular mechanisms that control α-arrestin function are not well understood. Here, we show that α-arrestin Aly1/Art6 is a phosphoprotein that specifically interacts with and is dephosphorylated by the Ca(2+)- and calmodulin-dependent phosphoprotein phosphatase calcineurin/PP2B. Dephosphorylation of Aly1 by calcineurin at a subset of phospho-sites is required for Aly1-mediated trafficking of the aspartic acid and glutamic acid transporter Dip5 to the vacuole, but it does not alter Rsp5 binding, ubiquitinylation, or stability of Aly1. In addition, dephosphorylation of Aly1 by calcineurin does not regulate the ability of Aly1 to promote the intracellular sorting of the general amino acid permease Gap1. These results suggest that phosphorylation of Aly1 inhibits its vacuolar trafficking function and, conversely, that dephosphorylation of Aly1 by calcineurin serves as a regulatory switch to promote Aly1-mediated trafficking to the vacuole.


Subject(s)
Arrestins/metabolism , Calcineurin/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , 14-3-3 Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Arrestins/chemistry , Catalytic Domain , Chromatography, Liquid , Endocytosis , Humans , Mass Spectrometry , Models, Biological , Molecular Sequence Data , Mutant Proteins/metabolism , Phenotype , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphorylation , Protein Binding , Protein Stability , Protein Transport , Saccharomyces cerevisiae Proteins/chemistry , Substrate Specificity , Ubiquitination , Vacuoles/metabolism
10.
bioRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38798520

ABSTRACT

Calcineurin (CN), the only Ca 2+ -calmodulin activated protein phosphatase, dephosphorylates substrates within membrane-associated Ca 2+ microdomains. CN binds to substrates and regulators via short linear motifs (SLIMs), PxIxIT and LxVP. PxIxIT binding to CN is Ca 2+ independent and affects its distribution, while LxVP associates only with the active enzyme and promotes catalysis. 31 human proteins contain one or more composite 'LxVPxIxIT' motifs, whose functional properties have not been examined. Here we report studies of calcimembrin/C16orf74 (CLMB), a largely uncharacterized protein containing a composite motif that binds and directs CN to membranes. We demonstrate that CLMB associates with membranes via N-myristoylation and dynamic S-acylation and is dephosphorylated by CN on Thr44. The LxVP and PxIxIT portions of the CLMB composite sequence, together with Thr44 phosphorylation, confer high affinity PxIxIT-mediated binding to CN (KD∼8.9 nM) via an extended, 33 LxVPxIxITxx(p)T 44 sequence. This binding promotes CLMB-based targeting of CN to membranes, but also protects Thr44 from dephosphorylation. Thus, we propose that CN dephosphorylates CLMB in multimeric complexes, where one CLMB molecule recruits CN to membranes via PxIxIT binding, allowing others to engage through their LxVP motif for dephosphorylation. This unique mechanism makes dephosphorylation sensitive to CLMB:CN ratios and is supported by in vivo and in vitro analyses. CLMB overexpression is associated with poor prognoses for several cancers, suggesting that it promotes oncogenesis by shaping CN signaling.

11.
Biochim Biophys Acta Mol Cell Res ; 1870(1): 119366, 2023 01.
Article in English | MEDLINE | ID: mdl-36191737

ABSTRACT

Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.


Subject(s)
Calcineurin , NFATC Transcription Factors , Humans , Calcineurin/chemistry , Calcineurin/metabolism , NFATC Transcription Factors/metabolism , Tacrolimus , Calmodulin/metabolism , Signal Transduction
12.
Eukaryot Cell ; 10(1): 63-71, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21097665

ABSTRACT

Hph1 and Hph2 are homologous integral endoplasmic reticulum (ER) membrane proteins required for Saccharomyces cerevisiae survival under environmental stress conditions. To investigate the molecular functions of Hph1 and Hph2, we carried out a split-ubiquitin-membrane-based yeast two-hybrid screen and identified their interactions with Sec71, a subunit of the Sec63/Sec62 complex, which mediates posttranslational translocation of proteins into the ER. Hph1 and Hph2 likely function in posttranslational translocation, as they interact with other Sec63/Sec62 complex subunits, i.e., Sec72, Sec62, and Sec63. hph1Δ hph2Δ cells display reduced vacuole acidification; increased instability of Vph1, a subunit of vacuolar proton ATPase (V-ATPase); and growth defects similar to those of mutants lacking V-ATPase activity. sec71Δ cells exhibit similar phenotypes, indicating that Hph1/Hph2 and the Sec63/Sec62 complex function during V-ATPase biogenesis. Hph1/Hph2 and the Sec63/Sec62 complex may act together in this process, as vacuolar acidification and Vph1 stability are compromised to the same extent in hph1Δ hph2Δ and hph1Δ hph2Δ sec71Δ cells. In contrast, loss of Pkr1, an ER protein that promotes posttranslocation assembly of Vph1 with V-ATPase subunits, further exacerbates hph1Δ hph2Δ phenotypes, suggesting that Hph1 and Hph2 function independently of Pkr1-mediated V-ATPase assembly. We propose that Hph1 and Hph2 aid Sec63/Sec62-mediated translocation of specific proteins, including factors that promote efficient biogenesis of V-ATPase, to support yeast cell survival during environmental stress.


Subject(s)
Heat-Shock Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vacuolar Proton-Translocating ATPases/biosynthesis , Gene Expression Regulation, Fungal , Hydrogen-Ion Concentration , Intracellular Signaling Peptides and Proteins/genetics , Multiprotein Complexes , Protein Binding , Saccharomyces cerevisiae Proteins/genetics , Stress, Physiological , Vacuoles/metabolism
13.
Eukaryot Cell ; 10(11): 1574-81, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21908599

ABSTRACT

Curcumin, a polyphenol derived from turmeric, is an ancient therapeutic used in India for centuries to treat a wide array of ailments. Interest in curcumin has increased recently, with ongoing clinical trials exploring curcumin as an anticancer therapy and as a protectant against neurodegenerative diseases. In vitro, curcumin chelates metal ions. However, although diverse physiological effects have been documented for this compound, curcumin's mechanism of action on mammalian cells remains unclear. This study uses yeast as a model eukaryotic system to dissect the biological activity of curcumin. We found that yeast mutants lacking genes required for iron and copper homeostasis are hypersensitive to curcumin and that iron supplementation rescues this sensitivity. Curcumin penetrates yeast cells, concentrates in the endoplasmic reticulum (ER) membranes, and reduces the intracellular iron pool. Curcumin-treated, iron-starved cultures are enriched in unbudded cells, suggesting that the G(1) phase of the cell cycle is lengthened. A delay in cell cycle progression could, in part, explain the antitumorigenic properties associated with curcumin. We also demonstrate that curcumin causes a growth lag in cultured human cells that is remediated by the addition of exogenous iron. These findings suggest that curcumin-induced iron starvation is conserved from yeast to humans and underlies curcumin's medicinal properties.


Subject(s)
Curcumin/pharmacology , Iron Chelating Agents/pharmacology , Iron/metabolism , Saccharomyces cerevisiae/drug effects , Biological Transport , Cell Cycle/drug effects , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Membrane/metabolism , Copper/metabolism , Endoplasmic Reticulum/metabolism , Humans , Iron/analysis , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
14.
ACS Meas Sci Au ; 1(2): 56-64, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-35128539

ABSTRACT

Signal transduction pathways rely on dynamic interactions between protein globular domains and short linear motifs (SLiMs). The weak affinities of these interactions are essential to allow fast rewiring of signaling pathways and downstream responses but also pose technical challenges for interaction detection and measurement. We recently developed a technique (MRBLE-pep) that leverages spectrally encoded hydrogel beads to measure binding affinities between a single protein of interest and 48 different peptide sequences in a single small volume. In prior work, we applied it to map the binding specificity landscape between calcineurin and the PxIxIT SLiM (Nguyen, H. Q. et al. Elife 2019, 8). Here, using peptide sequences known to bind the PP2A regulatory subunit B56α, we systematically compare affinities measured by MRBLE-pep or isothermal calorimetry (ITC) and confirm that MRBLE-pep accurately quantifies relative affinity over a wide dynamic range while using a fraction of the material required for traditional methods such as ITC.

15.
Nat Commun ; 12(1): 6064, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663815

ABSTRACT

Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAß1. We show that unlike canonical cytosolic calcineurin, CNAß1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAß1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAß1.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Cell Membrane/metabolism , Lipoylation/physiology , Phosphoric Monoester Hydrolases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Calcineurin/metabolism , Cell Line , Cytoplasm/metabolism , Golgi Apparatus/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Isoforms/metabolism , Signal Transduction/physiology
16.
Curr Biol ; 30(22): R1382-R1385, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33202241

ABSTRACT

A new study uses an elegant in vivo assay to comprehensively characterize the LP docking motif, which determines G1-CDK substrate specificity in fungi. The authors show that LP-cyclin docking strength determines the timing of Sic1 degradation, a key cell cycle event.


Subject(s)
Cyclins , Saccharomyces cerevisiae Proteins , Cyclins/metabolism , Phosphorylation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
17.
Article in English | MEDLINE | ID: mdl-31308145

ABSTRACT

Biological processes are dynamically regulated by signaling networks composed of protein kinases and phosphatases. Calcineurin, or PP3, is a conserved phosphoserine/phosphothreonine-specific protein phosphatase and member of the PPP family of phosphatases. Calcineurin is unique, however, in its activation by Ca2+ and calmodulin. This ubiquitously expressed phosphatase controls Ca2+-dependent processes in all human tissues, but is best known for driving the adaptive immune response by dephosphorylating the nuclear factor of the activated T-cells (NFAT) family of transcription factors. Therefore, calcineurin inhibitors, FK506 (tacrolimus), and cyclosporin A serve as immunosuppressants. We describe some of the adverse effects associated with calcineurin inhibitors that result from inhibition of calcineurin in nonimmune tissues, illustrating the many functions of this enzyme that have yet to be elucidated. In fact, calcineurin has essential roles beyond the immune system, from yeast to humans, but since its discovery more than 30 years ago, only a small number of direct calcineurin substrates have been shown (∼75 proteins). This is because of limitations in current methods for identification of phosphatase substrates. Here we discuss recent insights into mechanisms of calcineurin activation and substrate recognition that have been critical in the development of novel approaches for identifying its targets systematically. Rather than comprehensively reviewing known functions of calcineurin, we highlight new approaches to substrate identification for this critical regulator that may reveal molecular mechanisms underlying toxicities caused by calcineurin inhibitor-based immunosuppression.


Subject(s)
Calcineurin Inhibitors/chemistry , Calcineurin/metabolism , Calcium/metabolism , Cyclosporine/metabolism , Gene Expression Regulation , NFATC Transcription Factors/metabolism , Amino Acid Motifs , Animals , Calcineurin/chemistry , Computer Simulation , Humans , Hypertension/therapy , Immune System , Immunosuppression Therapy , Immunosuppressive Agents , Isoenzymes/chemistry , Nuclear Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Conformation , Protein Isoforms , Proteomics/methods , Signal Transduction , Tacrolimus/pharmacology
18.
J Cell Biol ; 156(1): 29-34, 2002 Jan 07.
Article in English | MEDLINE | ID: mdl-11781332

ABSTRACT

Calcium ions, present inside all eukaryotic cells, are important second messengers in the transduction of biological signals. In mammalian cells, the release of Ca(2+) from intracellular compartments is required for signaling and involves the regulated opening of ryanodine and inositol-1,4,5-trisphosphate (IP3) receptors. However, in budding yeast, no signaling pathway has been shown to involve Ca(2+) release from internal stores, and no homologues of ryanodine or IP3 receptors exist in the genome. Here we show that hyperosmotic shock provokes a transient increase in cytosolic Ca(2+) in vivo. Vacuolar Ca(2+), which is the major intracellular Ca(2+) store in yeast, is required for this response, whereas extracellular Ca(2+) is not. We aimed to identify the channel responsible for this regulated vacuolar Ca(2+) release. Here we report that Yvc1p, a vacuolar membrane protein with homology to transient receptor potential (TRP) channels, mediates the hyperosmolarity induced Ca(2+) release. After this release, low cytosolic Ca(2+) is restored and vacuolar Ca(2+) is replenished through the activity of Vcx1p, a Ca(2+)/H(+) exchanger. These studies reveal a novel mechanism of internal Ca(2+) release and establish a new function for TRP channels.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Hypertonic Solutions/pharmacology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Aequorin , Biological Transport/drug effects , Blotting, Western , Calcium/pharmacology , Calcium Channels/genetics , Calcium Chloride/pharmacology , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Microscopy, Fluorescence , Osmotic Pressure/drug effects , Phylogeny , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , TRPC Cation Channels , Vacuoles/metabolism
19.
Mol Cell Biol ; 26(12): 4729-45, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16738335

ABSTRACT

The Ca2+/calmodulin-dependent phosphatase calcineurin promotes yeast survival during environmental stress. We identified Slm1 and Slm2 as calcineurin substrates required for sphingolipid-dependent processes. Slm1 and Slm2 bind to calcineurin via docking sites that are required for their dephosphorylation by calcineurin and are related to the PXIXIT motif identified in NFAT. In vivo, calcineurin mediates prolonged dephosphorylation of Slm1 and Slm2 during heat stress, and this response can be mimicked by exogenous addition of the sphingoid base phytosphingosine. Slm proteins also promote the growth of yeast cells in the presence of myriocin, an inhibitor of sphingolipid biosynthesis, and regulation of Slm proteins by calcineurin is required for their full activity under these conditions. During heat stress, sphingolipids signal turnover of the uracil permease, Fur4. In cells lacking Slm protein activity, stress-induced endocytosis of Fur4 is blocked, and Fur4 accumulates at the cell surface in a ubiquitinated form. Furthermore, cells expressing a version of Slm2 that cannot be dephosphorylated by calcineurin display an increased rate of Fur4 turnover during heat stress. Thus, calcineurin may modulate sphingolipid-dependent events through regulation of Slm1 and Slm2. These findings, in combination with previous work identifying Slm1 and Slm2 as targets of Mss4/phosphatidylinositol 4,5-bisphosphate and TORC2 signaling, suggest that Slm proteins integrate information from a variety of signaling pathways to coordinate the cellular response to heat stress.


Subject(s)
Carrier Proteins/metabolism , Nucleotide Transport Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites/genetics , Calcineurin/metabolism , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cytoskeletal Proteins , Endocytosis , Heat-Shock Response , Models, Biological , Molecular Sequence Data , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Sphingolipids/metabolism , Substrate Specificity
20.
Elife ; 82019 07 08.
Article in English | MEDLINE | ID: mdl-31282865

ABSTRACT

Transient, regulated binding of globular protein domains to Short Linear Motifs (SLiMs) in disordered regions of other proteins drives cellular signaling. Mapping the energy landscapes of these interactions is essential for deciphering and perturbing signaling networks but is challenging due to their weak affinities. We present a powerful technology (MRBLE-pep) that simultaneously quantifies protein binding to a library of peptides directly synthesized on beads containing unique spectral codes. Using MRBLE-pep, we systematically probe binding of calcineurin (CN), a conserved protein phosphatase essential for the immune response and target of immunosuppressants, to the PxIxIT SLiM. We discover that flanking residues and post-translational modifications critically contribute to PxIxIT-CN affinity and identify CN-binding peptides based on multiple scaffolds with a wide range of affinities. The quantitative biophysical data provided by this approach will improve computational modeling efforts, elucidate a broad range of weak protein-SLiM interactions, and revolutionize our understanding of signaling networks.


Subject(s)
Hydrogels/chemistry , Microspheres , Peptide Library , Peptides/metabolism , Proteins/metabolism , Algorithms , Amino Acid Sequence , Binding, Competitive , Calcineurin/metabolism , Humans , Models, Theoretical , Phosphoprotein Phosphatases/metabolism , Protein Binding , Protein Interaction Maps , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL