Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445940

ABSTRACT

Understanding the complexities of the human brain and its associated disorders poses a significant challenge in neuroscience. Traditional research methods have limitations in replicating its intricacies, necessitating the development of in vitro models that can simulate its structure and function. Three-dimensional in vitro models, including organoids, cerebral organoids, bioprinted brain models, and functionalized brain organoids, offer promising platforms for studying human brain development, physiology, and disease. These models accurately replicate key aspects of human brain anatomy, gene expression, and cellular behavior, enabling drug discovery and toxicology studies while providing insights into human-specific phenomena not easily studied in animal models. The use of human-induced pluripotent stem cells has revolutionized the generation of 3D brain structures, with various techniques developed to generate specific brain regions. These advancements facilitate the study of brain structure development and function, overcoming previous limitations due to the scarcity of human brain samples. This technical review provides an overview of current 3D in vitro models of the human cortex, their development, characterization, and limitations, and explores the state of the art and future directions in the field, with a specific focus on their applications in studying neurodevelopmental and neurodegenerative disorders.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Animals , Humans , Brain/metabolism , Neurodegenerative Diseases/metabolism , Organoids
2.
Methods Mol Biol ; 2429: 189-199, 2022.
Article in English | MEDLINE | ID: mdl-35507162

ABSTRACT

In order to use induced Pluripotent Stem Cells (iPSCs) to model neurodegenerative diseases, efficient and homogeneous generation of neurons in vitro represents a key step. Here we describe a method to obtain and characterize functional human spinal and cranial motoneurons using a combined approach of microfluidic chips and programs designed for scientific multidimensional imaging. We have used this approach to analyze axonal phenotypes. These tools are useful to investigate the cellular and molecular bases of neuromuscular diseases, including amyotrophic lateral sclerosis and spinal muscular atrophy.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Axons/physiology , Humans , Lab-On-A-Chip Devices , Motor Neurons , Phenotype
3.
Life (Basel) ; 12(11)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431019

ABSTRACT

Maintaining the excitability of neurons and circuits is fundamental for healthy brain functions. The global compensatory increase in excitatory synaptic strength, in response to decreased activity, is one of the main homeostatic mechanisms responsible for such regulation. This type of plasticity has been extensively characterized in rodents in vivo and in vitro, but few data exist on human neurons maturation. We have generated an in vitro cortical model system, based on differentiated human-induced pluripotent stem cells, chronically treated with tetrodotoxin, to investigate homeostatic plasticity at different developmental stages. Our findings highlight the presence of homeostatic plasticity in human cortical networks and show that the changes in synaptic strength are due to both pre- and post-synaptic mechanisms. Pre-synaptic plasticity involves the potentiation of neurotransmitter release machinery, associated to an increase in synaptic vesicle proteins expression. At the post-synaptic level, we report an increase in the expression of post-synaptic density proteins, involved in glutamatergic receptor anchoring. These results extend our understanding of neuronal homeostasis and reveal the developmental regulation of its expression in human cortical networks. Since induced pluripotent stem cell-derived neurons can be obtained from patients with neurodevelopmental and neurodegenerative diseases, our platform offers a versatile model for assessing human neural plasticity under physiological and pathological conditions.

4.
Cell Death Dis ; 12(5): 498, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33993189

ABSTRACT

Fragile X syndrome (FXS) is a neurodevelopmental disorder, characterized by intellectual disability and sensory deficits, caused by epigenetic silencing of the FMR1 gene and subsequent loss of its protein product, fragile X mental retardation protein (FMRP). Delays in synaptic and neuronal development in the cortex have been reported in FXS mouse models; however, the main goal of translating lab research into pharmacological treatments in clinical trials has been so far largely unsuccessful, leaving FXS a still incurable disease. Here, we generated 2D and 3D in vitro human FXS model systems based on isogenic FMR1 knock-out mutant and wild-type human induced pluripotent stem cell (hiPSC) lines. Phenotypical and functional characterization of cortical neurons derived from FMRP-deficient hiPSCs display altered gene expression and impaired differentiation when compared with the healthy counterpart. FXS cortical cultures show an increased number of GFAP positive cells, likely astrocytes, increased spontaneous network activity, and depolarizing GABAergic transmission. Cortical brain organoid models show an increased number of glial cells, and bigger organoid size. Our findings demonstrate that FMRP is required to correctly support neuronal and glial cell proliferation, and to set the correct excitation/inhibition ratio in human brain development.


Subject(s)
Brain/diagnostic imaging , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Cell Differentiation , Fragile X Mental Retardation Protein/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL