Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
BMC Public Health ; 23(1): 1992, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828542

ABSTRACT

BACKGROUND: Spread worldwide through droplets, the Virus Sars-Cov-19 has caused a global health emergency alarm. In order to limit its spread, the use of masks has become part of the daily life of the entire population, however, little is known about its constant use and the changes generated in the oral cavity. This work aims to investigate correlations between the continuous use of masks covering the nose and mouth for 3 h and changes in the ecological factors of the oral cavity. METHODS: 34 volunteers were divided into 2 groups: wear only the filtering facepiece code 2 (FFP2) mask (Group A) and wear the FFP2 mask covered by a surgical mask (Group B). Measurement of Volatile Organic Compounds (VOCs), saliva rehydration and consistency test, collection of basal saliva and saliva stimulated with paraffin gum and mucosal swab were collected and analyzed at two times: before using the mask(s) (T0) and 3 h after continuous use of the mask(s) (T1). RESULTS: The results indicated a significant difference between the groups, in which the basal saliva volume and pH and the peaks of VOCs increased for group B between T0 and T1. The rehydration time decreased and the volume and pH of the stimulated saliva increased, but with no significant difference between the groups. Furthermore, group B showed a significant decrease in Candida albicans Colony Forming Units (CFUs) and Total Bacterial Count (TBC) between T0 and T1. CONCLUSION: It is concluded that the prolonged use of the FFP2 mask covered by a surgical mask can generate oral alterations in the user.


Subject(s)
Masks , Mouth , Humans , Equipment Design
2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36982855

ABSTRACT

Helicobacter pylori colonizes human gastric mucosa, overcoming stressful conditions and entering in a dormant state. This study evaluated: (i) H. pylori's physiological changes from active to viable-but-non-culturable (VBNC) and persister (AP) states, establishing times/conditions; (ii) the ability of vitamin C to interfere with dormancy generation/resuscitation. A dormant state was induced in clinical MDR H. pylori 10A/13 by: nutrient starvation (for VBNC generation), incubating in an unenriched medium (Brucella broth) or saline solution (SS), and (for AP generation) treatment with 10xMIC amoxicillin (AMX). The samples were monitored after 24, 48, and 72 h, 8-14 days by OD600, CFUs/mL, Live/Dead staining, and an MTT viability test. Afterwards, vitamin C was added to the H. pylori suspension before/after the generation of dormant states, and monitoring took place at 24, 48, and 72 h. The VBNC state was generated after 8 days in SS, and the AP state in AMX for 48 h. Vitamin C reduced its entry into a VBNC state. In AP cells, Vitamin C delayed entry, decreasing viable coccal cells and increasing bacillary/U-shaped bacteria. Vitamin C increased resuscitation (60%) in the VBNC state and reduced the aggregates of the AP state. Vitamin C reduced the incidence of dormant states, promoting the resuscitation rate. Pretreatment with Vitamin C could favor the selection of microbial vegetative forms that are more susceptible to H. pylori therapeutical schemes.


Subject(s)
Helicobacter pylori , Humans , Ascorbic Acid/pharmacology , Gastric Mucosa , Saline Solution , Microbial Viability
3.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674518

ABSTRACT

Chronic wounds have harmful effects on both patients and healthcare systems. Wound chronicity is attributed to an impaired healing process due to several host and local factors that affect healing pathways. The resulting ulcers contain a wide variety of microorganisms that are mostly resistant to antimicrobials and possess the ability to form mono/poly-microbial biofilms. The search for new, effective and safe compounds to handle chronic wounds has come a long way throughout the history of medicine, which has included several studies and trials of conventional treatments. Treatments focus on fighting the microbial colonization that develops in the wound by multidrug resistant pathogens. The development of molecular medicine, especially in antibacterial agents, needs an in vitro model similar to the in vivo chronic wound environment to evaluate the efficacy of antimicrobial agents. The Lubbock chronic wound biofilm (LCWB) model is an in vitro model developed to mimic the pathogen colonization and the biofilm formation of a real chronic wound, and it is suitable to screen the antibacterial activity of innovative compounds. In this review, we focused on the characteristics of chronic wound biofilms and the contribution of the LCWB model both to the study of wound poly-microbial biofilms and as a model for novel treatment strategies.


Subject(s)
Anti-Infective Agents , Wound Infection , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Persistent Infection , Wound Infection/drug therapy , Wound Infection/microbiology , Biofilms , Pseudomonas aeruginosa
4.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834684

ABSTRACT

Recently, there has been an increasing interest in finding new approaches to manage oral wound healing. Although resveratrol (RSV) exhibited many biological properties, such as antioxidant and anti-inflammatory activities, its use as a drug is limited by unfavorable bioavailability. This study aimed to investigate a series of RSV derivatives (1a-j) with better pharmacokinetic profiles. At first, their cytocompatibility at different concentrations was tested on gingival fibroblasts (HGFs). Among them, derivatives 1d and 1h significantly increased cell viability compared to the reference compound RSV. Thus, 1d and 1h were investigated for cytotoxicity, proliferation, and gene expression in HGFs, endothelial cells (HUVECs), and oral osteoblasts (HOBs), which are the main cells involved in oral wound healing. For HUVECs and HGFs, the morphology was also evaluated, while for HOBs ALP and mineralization were observed. The results showed that both 1d and 1h did not exert negative effects on cell viability, and at a lower concentration (5 µM) both even significantly enhanced the proliferative rate, compared to RSV. The morphology observations pointed out that the density of HUVECs and HGFs was promoted by 1d and 1h (5 µM) and mineralization was promoted in HOBs. Moreover, 1d and 1h (5 µM) induced a higher eNOS mRNA level in HUVECs, higher COL1 mRNA in HGFs, and higher OCN in HOBs, compared to RSV. The appreciable physicochemical properties and good enzymatic and chemical stability of 1d and 1h, along with their promising biological properties, provide the scientific basis for further studies leading to the development of RSV-based agents useful in oral tissue repair.


Subject(s)
Endothelial Cells , Fibroblasts , Resveratrol/pharmacology , Cells, Cultured , Fibroblasts/metabolism , Wound Healing , RNA, Messenger/metabolism
5.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805944

ABSTRACT

Innovative non-antibiotic compounds such as graphene oxide (GO) and light-emitting diodes (LEDs) may represent a valid strategy for managing chronic wound infections related to resistant pathogens. This study aimed to evaluate 630 nm LED and 880 nm LED ability to enhance the GO antimicrobial activity against Staphylococcus aureus- and Pseudomonas aeruginosa-resistant strains in a dual-species biofilm in the Lubbock chronic wound biofilm (LCWB) model. The effect of a 630 nm LED, alone or plus 5-aminolevulinic acid (ALAD)-mediated photodynamic therapy (PDT) (ALAD-PDT), or an 880 nm LED on the GO (50 mg/l) action was evaluated by determining the CFU/mg reductions, live/dead analysis, scanning electron microscope observation, and reactive oxygen species assay. Among the LCWBs, the best effect was obtained with GO irradiated with ALAD-PDT, with percentages of CFU/mg reduction up to 78.96% ± 0.21 and 95.17% ± 2.56 for S. aureus and P. aeruginosa, respectively. The microscope images showed a reduction in the cell number and viability when treated with GO + ALAD-PDT. In addition, increased ROS production was detected. No differences were recorded when GO was irradiated with an 880 nm LED versus GO alone. The obtained results suggest that treatment with GO irradiated with ALAD-PDT represents a valid, sustainable strategy to counteract the polymicrobial colonization of chronic wounds.


Subject(s)
Photochemotherapy , Staphylococcus aureus , Aminolevulinic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Graphite , Photochemotherapy/methods , Pseudomonas aeruginosa
6.
Curr Microbiol ; 77(2): 246-253, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31813013

ABSTRACT

Mouthguards in Ethylene Vinyl Acetate (EVA) should be sanitized to prevent alteration of oral microbiota. The present study determined, in vitro and by SEM observation, the decontaminating effect of different substances on EVA mouthguards previously contaminated with saliva and broth culture of Enterococcus faecalis ATCC 29212 and Candida albicans CH 34 (clinically isolated). Subsequently, the mouthguards were subjected to the following treatments: (A) Untreated; (B) 5 min with sterilized distilled water (H2O d); (C) 5 min with H2O2; (D) 5 min with a physiological solution; (E) toothbrush and fluoride toothpaste; (F) 5 min with 0.5% NaOCl; (G) 5 min with Oral Care Foam™; (H) 5 min with Bite Sept™. The highest efficacy against E. faecalis was demonstrated by H2O2 (84.19% bacterial load reduction). H2O2 and Oral Care Foam™ showed a greater reduction of salivary cell load. The highest efficacy against C. albicans was demonstrated by 0.5% NaOCl which caused a 92.95% reduction of cell load. In conclusion, hydrogen peroxide, 0.5% sodium hypochlorite and the solution Oral Care Foam™ allowed to obtain an optimum disinfection of the mouthguard. SEM observation showed that different substances demonstrated a decontaminating effect decreasing the microbial communities on the EVA surface.


Subject(s)
Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Disinfectants/pharmacology , Disinfection/methods , Enterococcus faecalis/drug effects , Mouth Protectors/microbiology , Sports , Equipment Contamination/prevention & control , Humans , Hydrogen Peroxide/pharmacology , Polyvinyls , Saliva/microbiology , Sodium Hypochlorite/pharmacology
7.
J Mater Sci Mater Med ; 31(10): 84, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32989624

ABSTRACT

The aim of this study was to evaluate the interaction between Streptococcus oralis and Polyetheretherketone (PEEK), a novel material recently introduced in implantology. The topographical characterization and the Streptococcus oralis adhesion on this material were compared with other titanium surfaces, currently used for the production of dental implants: machined and double etched (DAE). The superficial micro-roughness of the PEEK discs was analyzed by scanning electron microscopy (SEM) and, the Energy Dispersive Spectrometer (EDS) analyzed their chemical composition. Atomic Force Microscopy (AFM) was used to characterize the micro-topography and the sessile method to evaluate the wettability of the samples. Microbiological analysis measured the colony forming units (CFUs), the biomass (OD570 detection) and the cell viability after 24 and 48 h after Streptococcus oralis cultivation on the different discs, that were previously incubated with saliva. Results showed that PEEK was characterized by a micro-roughness that was similar to machined titanium but at nano-level the nano-roughness was significantly higher in respect to the other samples. The EDS showed that PEEK superficial composition was characterized mainly by Carbonium and Oxygen. The hydrophilicity and wetting properties of PEEK were similar to machined titanium; on the contrary, double etched discs (DAE) samples were characterized by significantly higher levels (p < 0.05). PEEK was characterized by significant lower CFUs, biomass and viable cells in respect to the titanium surfaces. No differences were found between machined and DAE. The anti-adhesive and antibacterial properties showed by PEEK at 24 and 48 h against a pioneer such as S. oralis, could have an important role in the prevention of all pathologies connected with biofilm formation, like peri-implantitis in dentistry or prosthetic failures in orthopedics.


Subject(s)
Benzophenones/chemistry , Dental Implants , Polymers/chemistry , Prosthesis Design , Streptococcus oralis/metabolism , Titanium/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion , Biomass , Carbon/chemistry , Cell Survival , Female , Humans , Hydrophobic and Hydrophilic Interactions , Male , Materials Testing , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Oxygen/chemistry , Prosthesis Failure , Saliva/microbiology , Stem Cells , Surface Properties , Wettability
8.
Int J Mol Sci ; 21(21)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167597

ABSTRACT

This work aimed to compare the capability of Streptococcus oralis to adhere to a novel surface, double-etched titanium (DAE), in respect to machined and single-etched titanium. The secondary outcome was to establish which topographical features could affect the interaction between the implant surface and bacteria. The samples' superficial features were characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS), and the wetting properties were tested through sessile methods. The novel surface, the double-etched titanium (DAE), was also analyzed with atomic force microscopy (AFM). S. oralis was inoculated on discs previously incubated in saliva, and then the colony-forming units (CFUs), biomass, and cellular viability were measured at 24 and 48h. SEM observation showed that DAE was characterized by higher porosity and Oxygen (%) in the superficial layer and the measurement of the wetting properties showed higher hydrophilicity. AFM confirmed the presence of a higher superficial nano-roughness. Microbiological analysis showed that DAE discs, coated by pellicle's proteins, were characterized by significantly lower CFUs at 24 and 48 h with respect to the other two groups. In particular, a significant inverse relationship was shown between the CFUs at 48 h and the values of the wetted area and a direct correlation with the water contact angle. The biomass at 24 h was slightly lower on DAE, but results were not significant concerning the other groups, both at 24 and 48 h. The DAE treatment not only modifies the superficial topography and increased hydrophilicity, but it also increases the Oxygen percentage in the superficial layer, which could contribute to the inhibition of S. oralis adhesion. DAE can be considered a promising treatment for titanium implants to counteract a colonization pioneer microorganism, such as S. oralis.


Subject(s)
Bacterial Adhesion/drug effects , Dental Implants/microbiology , Streptococcus oralis/metabolism , Titanium/chemistry , Adhesives/metabolism , Bacteria/metabolism , Bacterial Adhesion/physiology , Biofilms/drug effects , Coated Materials, Biocompatible/chemistry , Dental Implants/trends , Humans , Microscopy, Atomic Force/methods , Microscopy, Electron, Scanning/methods , Spectrometry, X-Ray Emission/methods , Streptococcus oralis/pathogenicity , Surface Properties/drug effects
9.
Am J Dent ; 31(5): 234-238, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30346668

ABSTRACT

PURPOSE: To investigate whether the interposition of a sealing-connector was able to reduce the bacterial leakage in external hexagon implants. METHODS: 20 implants with external hexagon connection were used. Ten Test implant-abutment assemblies were connected with the interposition of a sealing-connector molded in the exact shape of the two opposed surfaces. Ten Control implant-abutment assemblies were connected with no sealing-connector interposed. Two types of bacteria were introduced into the internal portion of the implant, before placing the connector. The study lasted 28 days. RESULTS: All control specimens, seeded with P. aeruginosa (PA) and A. actynomycetemcomitans (AA), showed contamination of the culture medium, indicative of microbial leakage. In the Test specimens, three instances of contaminated specimens were found in the samples seeded with PA and two contaminated specimens in the ones seeded with AA, for a total of five contaminated samples out of 10. The use of the sealing-connector was able to prevent bacterial leakage in half of the samples (50%). The leakage in both groups occurred mainly in the last week of the experiment. Probably, a longer period, under the conditions of this experiment, is necessary for the migration of the bacteria, and, furthermore, an observation period of 7 or 14 days may not be enough to show microbial contamination. CLINICAL SIGNIFICANCE: Using an interface under in vitro non-loading experimental conditions, could sometimes (50%) prevent bacterial microleakage and thus possibly the risk of peri-implant site infection. Moreover, less bone resorption and the maintenance of soft tissues and esthetics might be achieved in those cases where bacterial leakage does not occur.


Subject(s)
Bacteria , Dental Implant-Abutment Design , Dental Implants , Dental Leakage , Dental Abutments , Humans
10.
J Oral Implantol ; 40(1): 30-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-22208157

ABSTRACT

Prevention of microbial leakage at the implant-abutment junction is a major challenge for the construction of 2-stage implants in order to minimize inflammatory reactions and to maximize bone stability at the implant neck. The aim of the present in vitro study was an evaluation of the leakage observed over a period of 28 days in Cone Morse taper internal connections and in screwed-abutments connections. In the present study 10 specimens of Cone Morse (Group 1) and 10 of internal hexagon (Group 2) implants were used. The inner parts of 5 implants per group were inoculated with Pseudomonas aeruginosa (PS) suspension and 5 implants per group with Aggregatibacter actinomycetemcomitans (AA). The possible penetration of bacterial suspension into the surrounding solution was determined by the observation of turbidity of the broth. In Group 1, bacterial contamination was found in 3 out of 5 implant-abutment assemblies seeded with the PS and in 2 samples out of 5 in the assemblies seeded with AA, with a total of leaked assemblies in this group of 5 out of 10. In Group 2, bacterial contamination was found in 4 out of 5 implant-abutment assemblies seeded with the PS, and in 4 out of 5 samples seeded with AA, with a total of leaked assemblies of 8 out of 10. The present data confirm the reported high permeability to bacterial leakage of screw-retained abutment connections, and the lower infiltration rates-although not significantly-of Cone Morse taper internal connections.


Subject(s)
Dental Implant-Abutment Design , Dental Implants/microbiology , Dental Leakage/microbiology , Equipment Contamination , Gram-Negative Aerobic Rods and Cocci/isolation & purification , Aggregatibacter actinomycetemcomitans/isolation & purification , Bacterial Load , Bacteriological Techniques , Humans , Nephelometry and Turbidimetry , Pseudomonas aeruginosa/isolation & purification , Spectrophotometry , Surface Properties , Time Factors
11.
BMC Oral Health ; 14: 97, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25091394

ABSTRACT

BACKGROUND: The use of fixed and/or removable dental devices is an attributable factor that may affect the oral cavity homeostasis. The aim of this study was to monitor the oral environmental changes caused by dental devices, as sports mouthguards with the aid of a chair-side test. METHODS: Sixty children with sports-mouthguards were analyzed at baseline (T0), after 6 months of dental devices use (T1), after a year (T2) and after almost 6 months without using it (T3). At T0, a clinical monitoring was performed and the DMFT index was recorded. At each time of observation, the following parameters were recorded: FMPS, FMBS, unstimulated-flow rate, saliva consistency, resting pH, stimulated saliva, buffer capacity, the CFU/ml of Streptococcus mutans. RESULTS: In 60 subjects, mean age 9.9 ± 1.2, mean value of DMFT 1.55 ± 1.29,dmf-t 3.43 ± 1.21, FMPS and FMBS values increased significantly at T2. The values of unstimulated flow rate vary significantly within the observation times. The pH value and the buffering capacity reduced significantly at T2. The tests for the detection of S. mutans were negative in all the subjects in several observation times. All patients regularly used fluoridated toothpaste and comply with normal standards of oral hygiene; but over time the patients lost their initial motivation. CONCLUSIONS: Sport treatment with dental devices dues to changes in oral ecological factors: increases FMPS, FMBS and reduces the buffering capacity and the salivary pH. The use of removable devices increases the retentive plaque surfaces and inhibits the protective effect of saliva.The so-called "chair-side" tests were able to easily monitor patients and to determine the risk of oral disease during sport treatment.


Subject(s)
Mouth Protectors , Mouth/physiology , Sports Equipment , Bacterial Load , Buffers , Child , DMF Index , Dental Plaque Index , Female , Follow-Up Studies , Homeostasis/physiology , Humans , Hydrogen-Ion Concentration , Male , Mouth/microbiology , Oral Hygiene/methods , Periodontal Index , Saliva/metabolism , Saliva/physiology , Secretory Rate/physiology , Streptococcus mutans/isolation & purification , Toothbrushing/methods
12.
Gels ; 10(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38391440

ABSTRACT

This study aimed to evaluate the ability of photodynamic therapy, based on the use of a gel containing 5% delta aminolaevulinic acid (ALAD) for 45' followed by irradiation with 630 nm LED (PDT) for 7', to eradicate Candida albicans strains without damaging the gingiva. C. albicans oral strains and gingival fibroblasts (hGFs) were used to achieve these goals. The potential antifungal effects on a clinical resistant C. albicans S5 strain were evaluated in terms of biofilm biomass, colony forming units (CFU/mL) count, cell viability by live/dead analysis, and fluidity membrane changes. Concerning the hGFs, viability assays, morphological analysis (optical, scanning electronic (SEM), and confocal laser scanning (CLSM) microscopes), and assays for reactive oxygen species (ROS) and collagen production were performed. ALAD-mediated aPDT (ALAD-aPDT) treatment showed significant anti-biofilm activity against C. albicans S5, as confirmed by a reduction in both the biofilm biomass and CFUs/mL. The cell viability was strongly affected by the treatment, while on the contrary, the fluidity of the membrane remained unchanged. The results for the hGFs showed an absence of cytotoxicity and no morphological differences in cells subjected to ALAD-aPDT expected for CLSM results that exhibited an increase in the thickening of actin filaments. ROS production was augmented only at 0 h and 3 h, while the collagen appeared enhanced 7 days after the treatment.

13.
Metabolites ; 14(7)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-39057674

ABSTRACT

Oxidative stress and high levels of reactive oxygen species (ROS) are linked to various age-related diseases and chronic conditions, including damage to oral tissues. Dexamethasone (DEX), a widely used glucocorticoid in dentistry, can have side effects like increased ROS production and delayed wound healing. Resveratrol (RSV) is known for its antioxidant properties, but its limited bioavailability hinders its clinical use. This study investigated the potential of two RSV derivatives (1d and 1h) to address these limitations. The antioxidant abilities of 1d and 1h (5 µM) against DEX-induced oxidative stress (200 µM) were evaluated in human gingival fibroblasts (hGFs) and osteoblasts (hOBs). The effects of these compounds on cell viability, morphology, ROS levels, SOD activity, gene expression, and collagen production were evaluated. RSV derivatives, under DEX-induced oxidative stress condition, improved cell growth at 72 h (191.70 ± 10.92% for 1d+DEX and 184.80 ± 13.87% for 1h+DEX), morphology, and SOD activity (77.33 ± 3.35 OD for 1d+DEX; 76.87 ± 3.59 OD for 1h+DEX at 1 h), while reducing ROS levels (2417.33 ± 345.49 RFU for 1d+DEX and 1843.00 ± 98.53 RFU at 4 h), especially in hOBs. The co-treatment of RSV or derivatives with DEX restored the expression of genes that were downregulated by DEX, such as HO-1 (1.76 ± 0.05 for 1d+DEX and 1.79 ± 0.01 for 1h+DEX), CAT (0.97 ± 0.06 for 1d+DEX and 0.99 ± 0.03 for 1h+DEX), NRF2 (1.62 ± 0.04 for 1d+DEX and 1.91 ± 0.05 for 1h+DEX), SOD1 (1.63 ± 0.15 for 1d+DEX and 1.69 ± 0.04 for 1h+DEX). In addition, 1d and 1h preserved collagen production (111.79 ± 1.56 for 1d+DEX and 122.27 ± 1.56 for 1h+DEX). In conclusion, this study suggests that the RSV derivatives 1d and 1h hold promise as potential antioxidant agents to counteract DEX-induced oxidative stress. These findings contribute to the development of novel therapeutic strategies for managing oxidative stress-related oral conditions.

14.
Microbes Infect ; : 105384, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944110

ABSTRACT

Antimicrobial treatment of methicillin-resistant Staphylococcus pseudintermedius associated with canine wounds represents an important challenge. The aim of this study was to create a canine wound infection model, Lubbock Chronic Wound Biofilm (LCWB), with a focus on S. pseudintermedius, drawing inspiration from the established human model involving Staphylococcus aureus. Methicillin-resistant S. pseudintermedius 115 (MRSP) and Pseudomonas aeruginosa 700 strains, isolated from dog wounds, were used to set up the LCWB at 24, 48 and 72 h. The LCWBs were evaluated in terms of volume, weight, and microbial CFU/mg. The microbial spatial distribution in the LCWBs was assessed by SEM and CLSM imaging. The best incubation time for the LCWB production in terms of volume (3.38 cm3 ± 0.13), weight (0.86 gr ± 0.02) and CFU/mg (up to 7.05 × 106 CFU/mg ± 2.89 × 105) was 48 h. The SEM and CLSM images showed a major viable microbial colonization at 48 h with non-mixed bacteria with a prevalence of MRSP on the surface and P. aeruginosa 700 in the depth of the wound. The obtained findings demonstrate the capability of S. pseudintermedius to grow together P. aeruginosa in the LCWB model, representing the suitable model to reproduce the animal chronic wound in vitro.

15.
Antibiotics (Basel) ; 12(4)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37107037

ABSTRACT

This work aimed to evaluate and compare the antimicrobial actions and effects over time of eight types of mouthwash, based on the impact of chlorhexidine on the main microorganisms that are responsible for oral diseases: Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. The mouthwashes' antimicrobial action was determined in terms of their minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and time-kill curves at different contact times (10 s, 30 s, 60 s, 5 min, 15 min, 30 min, and 60 min), against selected oral microorganisms. All the mouthwashes showed a notable effect against C. albicans (MICs ranging from 0.02% to 0.09%), and higher MIC values were recorded with P. aeruginosa (1.56% to >50%). In general, the mouthwashes showed similar antimicrobial effects at reduced contact times (10, 30, and 60 s) against all the tested microorganisms, except with P. aeruginosa, for which the most significant effect was observed with a long time (15, 30, and 60 min). The results demonstrate significant differences in the antimicrobial actions of the tested mouthwashes, although all contained chlorhexidine and most of them also contained cetylpyridinium chloride. The relevant antimicrobial effects of all the tested mouthwashes, and those with the best higher antimicrobial action, were recorded by A-GUM® PAROEX®A and B-GUM® PAROEX®, considering their effects against the resistant microorganisms and their MIC values.

16.
Gels ; 9(2)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36826295

ABSTRACT

BACKGROUND: In this ex vivo study, the aim was to evaluate the effects of ALAD and red light on Enterococcus faecalis in infected root canals using a special intracanal fiber. METHODS: A total of 70 extracted, single-rooted teeth were used. The teeth were decoronated at the length of the roots to approximately 15 mm and then instrumented. The apical foramen was sealed by composite resin, and the root canals were infected with a pure culture of E. faecalis ATCC 29212 for eight days at 37 °C. Following the contamination period, the roots were divided into seven groups, including the positive and negative control groups, and treated as follows: ALAD 45 min; red light activation 7 min; ALAD 45 min and red-light activation 7 min; sodium hypochlorite 2.5% 15 min; sodium hypochlorite 1% 15 min. The samples were taken by three sterile paper points, transferred to tubes containing 1 mL of PBS, and immediately processed for the number of colony-forming units and the cell viability by using live/dead. RESULTS: The best treatment is obtained with 2.5% NaOCl. Except for ALAD + red light vs. 1% NaOCl, a statistically significant difference is recorded for all treatments. The combination of 2.5% NaOCl and ALAD + 7 min irradiation produces an evident killing effect on the E. faecalis cells. On the other hand, 1% NaOCl is ineffective for the viability action, with 25% of dead cells stained in red. CONCLUSIONS: This ex vivo study shows that ALAD gel with light irradiation is an efficacious protocol that exerts a potent antibacterial activity against E. faecalis in infected root canals.

17.
J Funct Biomater ; 14(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36976057

ABSTRACT

Guided bone regeneration (GBR) comprehends the application of membranes to drive bone healing and to exclude non-osteogenic tissues from interfering with bone regeneration. However, the membranes may be exposed to bacterial attack, with the risk of failure of the GBR. Recently, an antibacterial photodynamic protocol (ALAD-PDT) based on a gel with 5% 5-aminolevulinic acid incubated for 45 min and irradiated for 7 min by a LED light at 630 nm, also showed a pro-proliferative effect on human fibroblasts and osteoblasts. The present study hypothesized that the functionalization of a porcine cortical membrane (soft-curved lamina, OsteoBiol) with ALAD-PDT might promote its osteoconductive properties. TEST 1 aimed to verify the response of osteoblasts seeded on lamina with respect to the plate surface (CTRL). TEST 2 aimed to investigate the effects of ALAD-PDT on the osteoblasts cultured on the lamina. SEM analyses were performed to study the topographical characteristics of the membrane surface, the adhesion, and the morphology of cells at 3 days. The viability was assessed at 3 days, the ALP activity at 7 days, and calcium deposition at 14 days. Results showed the porous surface of the lamina and the increase in cell attachment of osteoblasts with respect to controls. The proliferation, the ALP, and bone mineralization activity of osteoblasts seeded on lamina resulted in being significantly higher (p < 0.0001) than controls. Results also showed an additional significative enhancement (p < 0.0001) in the proliferative rate in ALP and calcium deposition after applying ALAD-PDT. In conclusion, the functionalization of the cortical membranes cultured with osteoblasts with the ALAD-PDT improved their osteoconductive properties.

18.
Sci Rep ; 13(1): 22067, 2023 12 12.
Article in English | MEDLINE | ID: mdl-38086849

ABSTRACT

Novel technologies such as complex magnetic fields-CMFs represent an eco-sustainable proposal to counteract the infection associated to resistant microorganisms. The aim of this study was to evaluate the effect of two CMF programs (STRESS, ANTIBACTERIAL) against clinical antifungal resistant C. albicans also evaluating their uneffectiveness on gingival fibroblasts (hGFs). The STRESS program was more efficacious on C. albicans biofilm with up to 64.37% ± 10.80 of biomass and up to 99.19% ± 0.06 CFU/ml reductions in respect to the control also inducing an alteration of lipidic structure of the membrane. The MTT assay showed no CMFs negative effects on the viability of hGFs with a major ROS production with the ANTIBACTERIAL program at 3 and 24 h. For the wound healing assay, STRESS program showed the best effect in terms of the rate migration at 24 h, showing statistical significance of p < 0.0001. The toluidine-blue staining observations showed the typical morphology of cells and the presence of elongated and spindle-shaped with cytoplasmic extensions and lamellipodia was observed by SEM. The ANTIBACTERIAL program statistically increased the production of collagen with respect to control and STRESS program (p < 0.0001). CMFs showed a relevant anti-virulence action against C. albicans, no cytotoxicity effects and a high hGFs migration rate. The results of this study suggest that CMFs could represent a novel eco-sustainable strategy to counteract the resistant yeast biofilm infections.


Subject(s)
Antifungal Agents , Candida albicans , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fibroblasts , Biofilms , Anti-Bacterial Agents/pharmacology
19.
Materials (Basel) ; 16(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687511

ABSTRACT

Microbial adhesion on dental restorative materials may jeopardize the restorative treatment long-term outcome. The goal of this in vitro study was to assess Candida albicans capability to adhere and form a biofilm on the surface of heat-cured dental composites having different formulations but subjected to identical surface treatments and polymerization protocols. Three commercially available composites were evaluated: GrandioSO (GR), Venus Diamond (VD) and Enamel Plus HRi Biofunction (BF). Cylindrical specimens were prepared for quantitative determination of C. albicans S5 planktonic CFU count, sessile cells CFU count and biomass optical density (OD570 nm). Qualitative Concanavalin-A assays (for extracellular polymeric substances of a biofilm matrix) and Scanning Electron Microscope (SEM) analyses (for the morphology of sessile colonies) were also performed. Focusing on planktonic CFU count, a slight but not significant reduction was observed with VD as compared to GR. Regarding sessile cells CFU count and biomass OD570 nm, a significant increase was observed for VD compared to GR and BF. Concanavalin-A assays and SEM analyses confirmed the quantitative results. Different formulations of commercially available resin composites may differently interact with C. albicans. The present results showed a relatively more pronounced antiadhesive effect for BF and GR, with a reduction in sessile cells CFU count and biomass quantification.

20.
Biomedicines ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35327374

ABSTRACT

The use of a new gel containing aminolevulinic acid and red light (ALAD-PDI) was tested in order to counteract bacterial biofilm growth on different titanium implant surfaces. The varying antibacterial efficacy of ALAD-PDI against biofilm growth on several titanium surfaces was also evaluated. A total of 60 titanium discs (30 machined and 30 double-acid etched, DAE) were pre-incubated with saliva and then incubated for 24 h with Streptococcus oralis to form bacterial biofilm. Four different groups were distinguished: two exposed groups (MACHINED and DAE discs), covered with S. oralis biofilm and subjected to ALAD + PDI, and two unexposed groups, with the same surfaces and bacteria, but without the ALAD + PDI (positive controls). Negative controls were non-inoculated discs alone and combined with the gel (ALAD) without the broth cultures. After a further 24 h of anaerobic incubation, all groups were evaluated for colony-forming units (CFUs) and biofilm biomass, imaged via scanning electron microscope, and tested for cell viability via LIVE/DEAD analysis. CFUs and biofilm biomass had significantly higher presence on unexposed samples. ALAD-PDI significantly decreased the number of bacterial CFUs on both exposed surfaces, but without any statistically significant differences among them. Live/dead staining showed the presence of 100% red dead cells on both exposed samples, unlike in unexposed groups. Treatment with ALAD + red light is an effective protocol to counteract the S. oralis biofilm deposited on titanium surfaces with different tomography.

SELECTION OF CITATIONS
SEARCH DETAIL