Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Sensors (Basel) ; 23(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36679755

ABSTRACT

(1) Background and Goal: Several studies have investigated the association of sleep, diurnal patterns, and circadian rhythms with the presence and with the risk states of mental illnesses such as schizophrenia and bipolar disorder. The goal of our study was to examine actigraphic measures to identify features that can be extracted from them so that a machine learning model can detect premorbid latent liabilities for schizotypy and bipolarity. (2) Methods: Our team developed a small wrist-worn measurement device that collects and identifies actigraphic data based on an accelerometer. The sensors were used by carefully selected healthy participants who were divided into three groups: Control Group (C), Cyclothymia Factor Group (CFG), and Positive Schizotypy Factor Group (PSF). From the data they collected, our team performed data cleaning operations and then used the extracted metrics to generate the feature combinations deemed most effective, along with three machine learning algorithms for categorization. (3) Results: By conducting the training, we were able to identify a set of mildly correlated traits and their order of importance based on the Shapley value that had the greatest impact on the detection of bipolarity and schizotypy according to the logistic regression, Light Gradient Boost, and Random Forest algorithms. (4) Conclusions: These results were successfully compared to the results of other researchers; we had a similar differentiation in features used by others, and successfully developed new ones that might be a good complement for further research. In the future, identifying these traits may help us identify people at risk from mental disorders early in a cost-effective, automated way.


Subject(s)
Bipolar Disorder , Schizophrenia , Humans , Bipolar Disorder/diagnosis , Actigraphy/methods , Schizophrenia/diagnosis , Sleep , Circadian Rhythm
2.
Molecules ; 28(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37241818

ABSTRACT

Chiral and achiral vibrational sum-frequency generation (VSFG) spectroscopy was performed in the 1400-1700 and 2800-3800 cm-1 range to study the interfacial structure of photoactive yellow protein (PYP) adsorbed on polyethyleneimine (PEI) and poly-l-glutamic acid (PGA) surfaces. Nanometer-thick polyelectrolyte layers served as the substrate for PYP adsorption, with 6.5-pair layers providing the most homogeneous surfaces. When the topmost material was PGA, it acquired a random coil structure with a small number of ß2-fibrils. Upon adsorption on oppositely charged surfaces, PYP yielded similar achiral spectra. However, the VSFG signal intensity increased for PGA surfaces with a concomitant redshift of the chiral Cα-H and N-H stretching bands, suggesting increased adsorption for PGA compared to PEI. At low wavenumbers, both the backbone and the side chains of PYP induced drastic changes to all measured chiral and achiral VSFG spectra. Decreasing ambient humidity led to the loss of tertiary structure with a re-orientation of α-helixes, evidenced by a strongly blue-shifted chiral amide I band of the ß-sheet structure with a shoulder at 1654 cm-1. Our observations indicate that chiral VSFG spectroscopy is not only capable of determining the main type of secondary structure of PYP, i.e., ß-scaffold, but is also sensitive to tertiary protein structure.


Subject(s)
Glutamic Acid , Polyethyleneimine , Polyethyleneimine/chemistry , Adsorption , Proteins , Spectrum Analysis
3.
Molecules ; 28(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836593

ABSTRACT

The accumulation of proteins in filter membranes limits the efficiency of filtering technologies for cleaning wastewater. Efforts are ongoing to coat commercial filters with different materials (such as titanium dioxide, TiO2) to reduce the fouling of the membrane. Beyond monitoring the desired effect of the retention of biomolecules, it is necessary to understand what the biophysical changes are in water-soluble proteins caused by their interaction with the new coated filter membranes, an aspect that has received little attention so far. Using spin-label electron paramagnetic resonance (EPR), aided with native fluorescence spectroscopy and dynamic light scattering (DLS), here, we report the changes in the structure and dynamics of bovine serum albumin (BSA) exposed to TiO2 (P25) nanoparticles or passing through commercial polyvinylidene fluoride (PVDF) membranes coated with the same nanoparticles. We have found that the filtering process and prolonged exposure to TiO2 nanoparticles had significant effects on different regions of BSA, and denaturation of the protein was not observed, neither with the TiO2 nanoparticles nor when passing through the TiO2-coated filter membranes.


Subject(s)
Nanoparticles , Wastewater , Serum Albumin, Bovine/chemistry , Electron Spin Resonance Spectroscopy , Spin Labels , Titanium/chemistry , Nanoparticles/chemistry
4.
Eur Biophys J ; 48(5): 465-473, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30905045

ABSTRACT

In this paper, the photocycle of the dried photoactive yellow protein film has been investigated in different humidity environments, in order to characterize its nonlinear optical properties for possible integrated optical applications. The light-induced spectral changes of the protein films were monitored by an optical multichannel analyser set-up, while the accompanying refractive index changes were measured with the optical waveguide lightmode spectroscopy method. To determine the number and kinetics of spectral intermediates in the photocycle, the absorption kinetic data were analysed by singular value decomposition and multiexponential fitting methods, whose results were used in a subsequent step of fitting a photocycle model to the data. The absorption signals of the films were found to be in strong correlation with the measured light-induced refractive index changes, whose size and kinetics imply that photoactive yellow protein may be a good alternative for utilization as an active nonlinear optical material in future integrated optical applications.


Subject(s)
Bacterial Proteins/metabolism , Optical Phenomena , Photoreceptors, Microbial/metabolism , Kinetics , Spectrum Analysis
5.
Orv Hetil ; 156(52): 2116-9, 2015 Dec 27.
Article in Hungarian | MEDLINE | ID: mdl-26686748

ABSTRACT

INTRODUCTION: In the medical diagnostics of bacteria, the rapid detection of pathogenic microorganisms from body fluids is one of the most important tasks. The majority of the modern measuring techniques are based on specific labels bound to the bacteria. However, this strategy usually assumes a rather time-consuming procedure involving several steps (e.g., the widely used enzyme-linked immunosorbent assay normally consists of 5 consecutive steps). Hence, there is an urgent need for the elaboration of rapid, "label-free" techniques, that are often based on Lab-on-a-chip devices. AIM: In this paper, the authors report on the development of a biosensor based on a miniature, integrated optical Mach-Zehnder interferometer. METHOD: Functionalization of the measuring arm of the sensor by antibodies, made the rapid and specific label-free detection of pathogens feasible. RESULTS: Using the combination of the interferometer with a microfluidic system, the device was able to detect Escherichia coli bacteria at concentrations as low as 10(6) colony forming unit/ml within minutes. CONCLUSIONS: This makes the newly developed biosensor a promising device for a wide range of applications, not only in medical microbiology, but microbial forensics, criminal investigations, bio-terrorism threats and in environmental studies as well.


Subject(s)
Bacteria/isolation & purification , Biosensing Techniques , Interferometry/instrumentation , Lab-On-A-Chip Devices , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Biosensing Techniques/trends , Colony Count, Microbial , Escherichia coli/isolation & purification , Humans
6.
Biochim Biophys Acta ; 1830(10): 4564-72, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23747299

ABSTRACT

BACKGROUND: Recently, we have elaborated a thermodynamic theory that could coherently interpret the diverse effects of Hofmeister ions on proteins, based on a single physical parameter, the protein-water interfacial tension (Dér et al., Journal of Physical Chemistry B. 2007, 111, 5344-5350). This theory, implying a "liquid drop model", predicts changes in protein conformational fluctuations upon addition of Hofmeister salts (containing either kosmotropic or chaotropic anions) to the medium. METHODS: Here, we report experimental tests of this prediction using a complex approach by applying methods especially suited for the detection of protein fluctuation changes (neutron scattering, micro-calorimetry, and Fourier-transform infrared spectroscopy). RESULTS: It is demonstrated that Hofmeister salts, via setting the hydrophobic/hydrophilic properties of the protein-water interface, control conformational fluctuations even in the interior of the typical membrane transport protein bacteriorhodopsin, around its temperature-induced, unusual α(II)→α(I) conformational transition between 60 and 90°C. We found that below this transition kosmotropic (COOCH3(-)), while above it chaotropic (ClO4(-)) anions increase structural fluctuations of bR. It was also shown that, in each case, an onset of enhanced equilibrium fluctuations presages this phase transition in the course of the thermotropic response of bR. CONCLUSIONS: These results are in full agreement with the theory, and demonstrate that predictions based on protein-water interfacial tension changes can describe Hofmeister effects and interpret protein dynamics phenomena even in unusual cases. GENERAL SIGNIFICANCE: This approach is expected to provide a useful guide to understand the principles governing the interplay between protein interfacial properties and conformational dynamics, in general.


Subject(s)
Ions , Proteins/chemistry , Calorimetry, Differential Scanning , Neutrons , Scattering, Radiation , Spectroscopy, Fourier Transform Infrared , Thermodynamics
7.
Autophagy ; 20(7): 1639-1650, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38411137

ABSTRACT

The autophagosomal SNARE STX17 (syntaxin 17) promotes lysosomal fusion and degradation, but its autophagosomal recruitment is incompletely understood. Notably, PtdIns4P is generated on autophagosomes and promotes fusion through an unknown mechanism. Here we show that soluble recombinant STX17 is spontaneously recruited to negatively charged liposomes and adding PtdIns4P to liposomes containing neutral lipids is sufficient for its recruitment. Consistently, STX17 colocalizes with PtdIns4P-positive autophagosomes in cells, and specific inhibition of PtdIns4P synthesis on autophagosomes prevents its loading. Molecular dynamics simulations indicate that C-terminal positively charged amino acids establish contact with membrane bilayers containing negatively charged PtdIns4P. Accordingly, Ala substitution of Lys and Arg residues in the C terminus of STX17 abolishes membrane binding and impairs its autophagosomal recruitment. Finally, only wild type but not Ala substituted STX17 expression rescues the autophagosome-lysosome fusion defect of STX17 loss-of-function cells. We thus identify a key step of autophagosome maturation that promotes lysosomal fusion.Abbreviations: Cardiolipin: 1',3'-bis[1-palmitoyl-2-oleoyl-sn-glycero-3-phospho]-glycerol; DMSO: dimethyl sulfoxide; GST: glutathione S-transferase; GUV: giant unilamellar vesicles; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PA: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate; PC/POPC: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine; PG: 1-palmitoyl-2-linoleoyl-sn-glycero-3-phospho-(1'-rac-glycerol); PI: L-α-phosphatidylinositol; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; POPE/PE: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; PS: 1-stearoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine; PtdIns(3,5)P2: 1,2-dioleoyl-sn-glycero-3-phospho-(1"-myo-inositol-3',5'-bisphosphate); PtdIns3P: 1,2- dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-3'-phosphate); PtdIns4P: 1,2-dioleoyl-sn-glycero-3-phospho-(1"-myo-inositol-4'-phosphate); SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; STX17: syntaxin 17.


Subject(s)
Autophagosomes , Lysosomes , Membrane Fusion , Phosphatidylinositol Phosphates , Qa-SNARE Proteins , Lysosomes/metabolism , Humans , Autophagosomes/metabolism , Membrane Fusion/drug effects , Qa-SNARE Proteins/metabolism , Phosphatidylinositol Phosphates/metabolism , Autophagy/physiology , Autophagy/drug effects , Liposomes/metabolism , Molecular Dynamics Simulation , HeLa Cells
8.
Sci Rep ; 14(1): 5981, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472275

ABSTRACT

Human physical activity (HPA), a fundamental physiological signal characteristic of bodily motion is of rapidly growing interest in multidisciplinary research. Here we report the existence of hitherto unidentified hierarchical levels in the temporal organization of HPA on the ultradian scale: on the minute's scale, passive periods are followed by activity bursts of similar intensity ('quanta') that are organized into superstructures on the hours- and on the daily scale. The time course of HPA can be considered a stochastic, quasi-binary process, where quanta, assigned to task-oriented actions are organized into work packages on higher levels of hierarchy. In order to grasp the essence of this complex dynamic behaviour, we established a stochastic mathematical model which could reproduce the main statistical features of real activity time series. The results are expected to provide important data for developing novel behavioural models and advancing the diagnostics of neurological or psychiatric diseases.


Subject(s)
Exercise , Models, Theoretical , Humans
9.
Lab Chip ; 24(5): 1030-1063, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38353254

ABSTRACT

A great progress has been made in the development and use of lab-on-a-chip devices to model and study the blood-brain barrier (BBB) in the last decade. We present the main types of BBB-on-chip models and their use for the investigation of BBB physiology, drug and nanoparticle transport, toxicology and pathology. The selection of the appropriate cell types to be integrated into BBB-on-chip devices is discussed, as this greatly impacts the physiological relevance and translatability of findings. We identify knowledge gaps, neglected engineering and cell biological aspects and point out problems and contradictions in the literature of BBB-on-chip models, and suggest areas for further studies to progress this highly interdisciplinary field. BBB-on-chip models have an exceptional potential as predictive tools and alternatives of animal experiments in basic and preclinical research. To exploit the full potential of this technique expertise from materials science, bioengineering as well as stem cell and vascular/BBB biology is necessary. There is a need for better integration of these diverse disciplines that can only be achieved by setting clear parameters for characterizing both the chip and the BBB model parts technically and functionally.


Subject(s)
Blood-Brain Barrier , Models, Biological , Animals , Blood-Brain Barrier/metabolism , Lab-On-A-Chip Devices , Biological Transport , Brain
10.
Eur Biophys J ; 42(2-3): 147-58, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23160754

ABSTRACT

The rate of rotation of the rotor in the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or steady parts of the enzyme, is estimated in native vacuolar membrane vesicles from Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are formed spontaneously after exposing purified yeast vacuoles to osmotic shock. The fraction of total ATPase activity originating from the V-ATPase is determined by using the potent and specific inhibitor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during ten min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit of the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data are incompatible with models assuming multiple binding sites), to the inhibitor titration curve determines the concentration of the enzyme. Combining this with the known ATP/rotation stoichiometry of the V-ATPase and the assayed concentration of inorganic phosphate liberated by the V-ATPase, leads to an average rate of ~10 Hz for full 360° rotation (and a range of 6-32 Hz, considering the ± standard deviation of the enzyme concentration), which, from the time-dependence of the activity, extrapolates to ~14 Hz (8-48 Hz) at the beginning of the reaction. These are lower-limit estimates. To our knowledge, this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and is not fixed to a solid support; instead it is functioning in its native membrane environment.


Subject(s)
Intracellular Membranes/enzymology , Rotation , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/enzymology , Biocatalysis , Macrolides/pharmacology , Models, Molecular , Phosphates/metabolism , Protein Structure, Tertiary , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors
11.
Nanomaterials (Basel) ; 13(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513080

ABSTRACT

We successfully created a composite photonic structure out of porous silicon (PSi) microcavities doped by the photochromic protein, photoactive yellow protein (PYP). Massive incorporation of the protein molecules into the pores was substantiated by a 30 nm shift of the resonance dip upon functionalization, and light-induced reflectance changes of the device due to the protein photocycle were recorded. Model calculations for the photonic properties of the device were consistent with earlier results on the nonlinear optical properties of the protein, whose degree of incorporation into the PSi structure was also estimated. The successful proof-of-concept results are discussed in light of possible practical applications in the future.

12.
Cells ; 12(10)2023 05 19.
Article in English | MEDLINE | ID: mdl-37408264

ABSTRACT

The growth of bacterial populations has been described as a dynamic process of continuous reproduction and cell death. However, this is far from the reality. In a well fed, growing bacterial population, the stationary phase inevitably occurs, and it is not due to accumulated toxins or cell death. A population spends the most time in the stationary phase, where the phenotype of the cells alters from the proliferating ones, and only the colony forming unit (CFU) decreases after a while, not the total cell concentration. A bacterial population can be considered as a virtual tissue as a result of a specific differentiation process, in which the exponential-phase cells develop to stationary-phase cells and eventually reach the unculturable form. The richness of the nutrient had no effect on growth rate or on stationary cell density. The generation time seems not to be a constant value, but it depended on the concentration of the starter cultures. Inoculations with serial dilutions of stationary populations reveal a so-called minimal stationary cell concentration (MSCC) point, up to which the cell concentrations remain constant upon dilutions; that seems to be universal among unicellular organisms.


Subject(s)
Cell Division , Cytokinesis , Synechococcus , Synechococcus/growth & development , Synechococcus/metabolism , Batch Cell Culture Techniques , Proteomics , Culture Media/metabolism , Bacterial Proteins/metabolism
13.
Chem Sci ; 14(36): 9951-9958, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37736621

ABSTRACT

The function of microbial as well as mammalian retinal proteins (aka rhodopsins) is associated with a photocycle initiated by light excitation of the retinal chromophore of the protein, covalently bound through a protonated Schiff base linkage. Although electrostatics controls chemical reactions of many organic molecules, attempt to understand its role in controlling excited state reactivity of rhodopsins and, thereby, their photocycle is scarce. Here, we investigate the effect of highly conserved tryptophan residues, between which the all-trans retinal chromophore of the protein is sandwiched in microbial rhodopsins, on the charge distribution along the retinal excited state, quantum yield and nature of the light-induced photocycle and absorption properties of Gloeobacter rhodopsin (GR). Replacement of these tryptophan residues by non-aromatic leucine (W222L and W122L) or phenylalanine (W222F) does not significantly affect the absorption maximum of the protein, while all the mutants showed higher sensitivity to photobleaching, compared to wild-type GR. Flash photolysis studies revealed lower quantum yield of trans-cis photoisomerization in W222L as well as W222F mutants relative to wild-type. The photocycle kinetics are also controlled by these tryptophan residues, resulting in altered accumulation and lifetime of the intermediates in the W222L and W222F mutants. We propose that protein-retinal interactions facilitated by conserved tryptophan residues are crucial for achieving high quantum yield of the light-induced retinal isomerization, and affect the thermal retinal re-isomerization to the resting state.

14.
Biosensors (Basel) ; 13(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36979569

ABSTRACT

The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier (BBB) especially profited from this advanced technological approach. The BBB represents the tightest endothelial barrier within the vasculature with high electric resistance and low passive permeability, providing a controlled interface between the circulation and the brain. The multi-cell type dynamic BBB-on-chip models are in demand in several fields as alternatives to expensive animal studies or static culture inserts methods. Their combination with integrated biosensors provides real-time and noninvasive monitoring of the integrity of the BBB and of the presence and concentration of agents contributing to the physiological and metabolic functions and pathologies. In this review, we describe built-in sensors to characterize BBB models via quasi-direct current and electrical impedance measurements, as well as the different types of biosensors for the detection of metabolites, drugs, or toxic agents. We also give an outlook on the future of the field, with potential combinations of existing methods and possible improvements of current techniques.


Subject(s)
Blood-Brain Barrier , Brain , Animals , Humans , Blood-Brain Barrier/metabolism , Biological Transport , Cell Culture Techniques , Lab-On-A-Chip Devices
15.
Nucleic Acids Res ; 38(20): 7155-66, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20587501

ABSTRACT

The GGCC-specific restriction endonuclease BspRI is one of the few Type IIP restriction endonucleases, which were suggested to be a monomer. Amino acid sequence information obtained by Edman sequencing and mass spectrometry analysis was used to clone the gene encoding BspRI. The bspRIR gene is located adjacently to the gene of the cognate modification methyltransferase and encodes a 304 aa protein. Expression of the bspRIR gene in Escherichia coli was dependent on the replacement of the native TTG initiation codon with an ATG codon, explaining previous failures in cloning the gene using functional selection. A plasmid containing a single BspRI recognition site was used to analyze kinetically nicking and second-strand cleavage under steady-state conditions. Cleavage of the supercoiled plasmid went through a relaxed intermediate indicating sequential hydrolysis of the two strands. Results of the kinetic analysis of the first- and second-strand cleavage are consistent with cutting the double-stranded substrate site in two independent binding events. A database search identified eight putative restriction-modification systems in which the predicted endonucleases as well as the methyltransferases share high sequence similarity with the corresponding protein of the BspRI system. BspRI and the related putative restriction endonucleases belong to the PD-(D/E)XK nuclease superfamily.


Subject(s)
DNA Cleavage , Deoxyribonucleases, Type II Site-Specific/chemistry , Deoxyribonucleases, Type II Site-Specific/genetics , Amino Acid Sequence , Cloning, Molecular , Deoxyribonucleases, Type II Site-Specific/metabolism , Escherichia coli/genetics , Gene Expression , Molecular Sequence Data
16.
Lab Chip ; 22(14): 2766-2776, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35786729

ABSTRACT

This study aimed at exploiting the so far unexploited potential of carrying out on-line sample pretreatment steps on microfluidic chips for single particle inductively coupled plasma mass spectrometry (spICP-MS) measurements, and demonstrating their ability to practically facilitate most of the simpler tasks involved in the spICP-MS analysis of nanoparticles. For this purpose, polydimethylsiloxane microfluidic chips, capable of high-range dilution and sample injection were made by casting, using high-precision, 3D-printed molds. Optimization of their geometry and functions was done by running several hydrodynamic simulations and by gravimetric, fluorescence enhanced microscope imaging and solution-based ICP-MS experiments. On the optimized microfluidic chips, several experiments were done, demonstrating the benefits of the approach and these devices, such as the determination of nanoparticle concentration using only a few tens of microliters of sample, elimination of solute interferences by dilution, solution-based size calibration and characterisation of binary nanoparticles. Due to the unique design of the chips, they can be linked together to extend the dilution range of the system by more than a magnitude per chip. This feature was also demonstrated in applications requiring multiple-magnitude dilution rates, when two chips were sequentially coupled.


Subject(s)
Microfluidics , Nanoparticles , Mass Spectrometry/methods , Nanoparticles/chemistry , Particle Size , Spectrum Analysis
17.
Bioelectrochemistry ; 146: 108138, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35487144

ABSTRACT

In order to elucidate the old, still unsolved problem of how the diffuse electric double layer responds to an abrupt, intramolecular charge displacement inside a biological membrane, we investigated the fastest components of the light-induced electric signals of bacteriorhodopsin and its mutants, in numerous ionic and buffer solutions. The obtained data for temperature and solute concentration dependence were interpreted as a consequence of changes in the capacity of the diffuse double layer surrounding the purple membrane. The possible physiological consequences of this so far not demonstrated phenomenon are discussed.


Subject(s)
Bacteriorhodopsins , Light , Bacteriorhodopsins/physiology , Cell Membrane , Electricity , Temperature
18.
Biomedicines ; 10(1)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35052867

ABSTRACT

Since the outbreak of the global pandemic caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), several clinical aspects of the disease have come into attention. Besides its primary route of infection through the respiratory system, SARS-CoV-2 is known to have neuroinvasive capacity, causing multiple neurological symptoms with increased neuroinflammation and blood-brain barrier (BBB) damage. The viral spike protein disseminates via circulation during infection, and when reaching the brain could possibly cross the BBB, which was demonstrated in mice. Therefore, its medical relevance is of high importance. The aim of this study was to evaluate the barrier penetration of the S1 subunit of spike protein in model systems of human organs highly exposed to the infection. For this purpose, in vitro human BBB and intestinal barrier cell-culture systems were investigated by an optical biosensing method. We found that spike protein crossed the human brain endothelial cell barrier effectively. Additionally, spike protein passage was found in a lower amount for the intestinal barrier cell layer. These observations were corroborated with parallel specific ELISAs. The findings on the BBB model could provide a further basis for studies focusing on the mechanism and consequences of spike protein penetration across the BBB to the brain.

19.
Opt Express ; 19(20): 18861-70, 2011 Sep 26.
Article in English | MEDLINE | ID: mdl-21996828

ABSTRACT

Several inorganic and organic materials have been suggested for utilization as nonlinear optical material performing light-controlled active functions in integrated optical circuits, however, none of them is considered to be the optimal solution. Here we present the first demonstration of a subpicosecond photonic switch by an alternative approach, where the active role is performed by a material of biological origin: the chromoprotein bacteriorhodopsin, via its ultrafast BR->K and BR->I transitions. The results may serve as a basis for the future realization of protein-based integrated optical devices that can eventually lead to a conceptual revolution in the development of telecommunications technologies.


Subject(s)
Bacteriorhodopsins/chemistry , Bacteriorhodopsins/radiation effects , Models, Theoretical , Nonlinear Dynamics , Optical Devices , Photochemistry/methods , Photons , Computer Simulation , Equipment Design , Telecommunications
20.
Micromachines (Basel) ; 12(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34945294

ABSTRACT

The tremendous success of microelectronics at the end of the 20th century, often symbolized by "Moore's law", is based on miniaturization of the active and passive elements of electronic circuits [...].

SELECTION OF CITATIONS
SEARCH DETAIL