Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Publication year range
1.
Environ Sci Technol ; 58(12): 5472-5482, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466321

ABSTRACT

The fate of selected UV filters (UVFs) was investigated in two soil aquifer treatment (SAT) systems, one supplemented with a reactive barrier containing clay and vegetable compost and the other as a traditional SAT reference system. We monitored benzophenone-3 (BP-3) and its transformation products (TPs), including benzophenone-1 (BP-1), 4,4'-dihydroxybenzophenone (4DHB), 4-hydroxybenzophenone (4HB), and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB), along with benzophenone-4 (BP-4) and avobenzone (AVO) in all involved compartments (water, aquifer sediments, and biofilm). The reactive barrier, which enhances biochemical activity and biofilm development, improved the removal of all detected UVFs in water samples. Among monitored UVFs, only 4HB, BP-4, and AVO were detected in sediment and biofilm samples. But the overall retained amounts were several orders of magnitude larger than those dissolved. These amounts were quantitatively reproduced with a specifically developed simple analytical model that consists of a mobile compartment and an immobile compartment. Retention and degradation are restricted to the immobile water compartment, where biofilm absorption was simulated with well-known compound-specific Kow values. The fact that the model reproduced observations, including metabolites detected in the biofilm but not in the (mobile) water samples, supports its validity. The results imply that accumulation ensures significant biodegradation even if the degradation rates are very low and suggest that our experimental findings for UVFs and TPs can be extended to other hydrophobic compounds. Biofilms act as accumulators and biodegraders of hydrophobic compounds.


Subject(s)
Soil , Water Pollutants, Chemical , Porosity , Sunscreening Agents/analysis , Benzophenones/chemistry , Water/chemistry , Water Pollutants, Chemical/analysis
2.
Environ Res ; 237(Pt 1): 116923, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37598843

ABSTRACT

Currently, water scarcity affects more than three billion people. Nevertheless, the volume of treated wastewater discharged into the environment is estimated to exceed 100 m3 per inhabitant/year. These water resources are regularly used in agriculture worldwide to overcome water shortages. Such a practice, however, entails the uptake of waterborne pollutants, such as pharmaceuticals and personal care products (PPCPs), by crops and their further access to the food web, constituting an additional route of human exposure to PPCPs, with potential health outcomes. In this study, the occurrence of 56 PPCPs in tomatoes, lettuce, and carrot, together with soil and irrigation water, was evaluated using a QuEChERS-based methodology for extraction and LC-MS/MS for analysis. The influence of the selected cultivation conditions on the plant uptake levels of PPCPs was assessed. Two irrigation water qualities (secondary and tertiary treatment effluents), two soil compositions (sandy and clayey), two irrigation systems (dripping and sprinkling), and three crop types (lettuce, tomato, and carrot) were tested. Carrots showed the highest load of PPCPs (7787 ng/g dw), followed by tomatoes (1692 ng/g dw) and lettuces (1248 ng/g dw). The most translocated PPCPs were norfluoxetine (fluoxetine antidepressant main metabolite) (521 ng/g dw), and the anti-inflammatory diclofenac (360 ng/g dw). Nine PPCPs, are reported to be accumulated in crops for the first time. Water quality was the most important factor for reducing PPCPs' plant uptake. Overall, the best conditions for reducing PPCP uptake by crops were irrigation with reclaimed water by sprinkling in soils with higher clay content. The risk assessment performed revealed that the crops' consumption posed no risk to human health. This study serves as the first comprehensive assessment of the relevance of diverse cultivation factors on PPCPs' plant uptake under field agricultural practices.

3.
Environ Res ; 217: 114836, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36400222

ABSTRACT

Several anthropogenic contaminants have been identified as competing with the thyroid hormone thyroxine (T4) for binding to transport proteins as transthyretin (TTR). This binding can potentially create toxicity mechanisms posing a threat to human health. Many organic UV filters (UVFs) and paraben preservatives (PBs), widely used in personal care products, are chemicals of emerging concern due to their adverse effects as potential thyroid-disrupting compounds. Recently, organic UVFs have been found in paired maternal and fetal samples and PBs have been detected in placenta, which opens the possibility of the involvement of TTR in the transfer of these chemicals across physiological barriers. We aimed to investigate a discrete set of organic UVFs and PBs to identify novel TTR binders. The binding affinities of target UVFs towards TTR were evaluated using in vitro T4 competitive binding assays. The ligand-TTR affinities were determined by isothermal titration calorimetry (ITC) and compared with known TTR ligands. In parallel, computational studies were used to predict the 3-D structures of the binding modes of these chemicals to TTR. Some organic UVFs, compounds 2,2',4,4'-tetrahydroxybenzophenone (BP2, Kd = 0.43 µM); 2,4-dihydroxybenzophenone (BP1, Kd = 0.60 µM); 4,4'-dihydroxybenzophenone (4DHB, Kd = 0.83 µM), and 4-hydroxybenzophenone (4HB, Kd = 0.93 µM), were found to display a high affinity to TTR, being BP2 the strongest TTR binder (ΔH = -14.93 Kcal/mol). Finally, a correlation was found between the experimental ITC data and the TTR-ligand docking scores obtained by computational studies. The approach integrating in vitro assays and in silico methods constituted a useful tool to find TTR binders among common organic UVFs. Further studies on the involvement of the transporter protein TTR in assisting the transplacental transfer of these chemicals across physiological barriers and the long-term consequences of prenatal exposure to them should be pursued.


Subject(s)
Prealbumin , Thyroid Hormones , Pregnancy , Female , Humans , Prealbumin/chemistry , Prealbumin/metabolism , Ligands , Thyroid Hormones/metabolism , Thyroxine , Carrier Proteins
4.
Sensors (Basel) ; 20(7)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32224938

ABSTRACT

Benzotriazoles (BZTs) are high production volume industrial chemicals that are used in various applications such as corrosion inhibitors, antifreeze agents, and UV radiation stabilizers. Given their potential ecotoxicological implications for different ecosystems and in human health, as well as their poor biodegradability, they are of increasing concern. In this study, a new voltammetric method using commercial screen-printed electrodes (SPEs) has been developed for the sensing of BZTs in water samples to help in their environmental monitoring. To this end, different types of SPEs based on carbon nanoallotropes and copper were tested under several experimental conditions to determine the two BZTs most frequently detected in the environment: 1H-benzotriazole (BZT) and 5-methyl-1H-benzotriazole (Me-BZT, tolyltriazole) as model compounds for BZTs. Carbon nanofibers electrodes exhibited the best performance, allowing detection limits as low as 0.4 mg L-1 for both BZTs, with repeatability and reproducibility of ca. 5%. The applicability of the method was tested through the determination of BZT in spiked drinking water samples, suggesting its suitability for the sensing of samples heavily polluted with BZTs.

5.
J Environ Manage ; 274: 111081, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32810678

ABSTRACT

The present study evaluated the efficiency of a semi-closed horizontal tubular photobioreactor (PBR) at demonstrative scale to remove a total of 35 target compounds, including benzotriazoles, benzophenones, antibiotics and different pharmaceuticals present in irrigation water in a peri-urban rural area. This water run through an open channel and was a mixture of reclaimed wastewater from a nearby wastewater treatment plant (WWTP) and run-off from the different agricultural fields in the area. Most of the compounds studied are usually not fully eliminated during conventional wastewater treatment, which justifies the need to investigate alternative treatment strategies. A total of 21 of these compounds were detected in the irrigation water. Benzotriazoles were only partially removed after the microalgae treatment, with elimination rates similar to those of conventional WWTPs. The UV filter benzophenone-3 (BP3) showed variable removals, ranging from no elimination to 51%, whereas 4-methylbenzilidenecamphor (4MBC) was completely eliminated. Regarding pharmaceuticals, average removals were higher, in the range of 60-100%, with the exception of the antibiotics sulfamethoxazole (46%) and sulfapyridine, which was not removed. Despite the low biomass productivity of the PBR, parameters such as the size of the reactors, the specific mixed cultures developed and the high temperatures and pH in the closed system may account for the overall good results, The efficiency and sustainability of these systems make them a solid, feasible treatment choice.


Subject(s)
Microalgae , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Photobioreactors , Waste Disposal, Fluid , Wastewater/analysis
6.
Ecotoxicol Environ Saf ; 184: 109565, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31514078

ABSTRACT

To address the concern about the environmental impact of engineered nanoparticles frequently used in the recently marketed personal care and hygiene products (PCPs), we conducted a toxicity assessment and determined the EC50 values of the nanosized inorganic UV filter TiO2 (nano-TiO2), as well as those of the organic UV filter oxybenzone (BP3) and three parabens (methyl, propyl, and benzylparaben) present in most PCPs formulation. The bioassays were carried out through standardized toxicity bioassays on two environmentally relevant aquatic species i.e. Daphnia magna and Phaeodactylum tricornutum. For nano-TiO2 48 h EC50 on D. magna was 3.09 mgL-1 and for parabens ranged from 32.52 to 1.35 mgL-1. The two most toxic compounds on D. magna, nano-TiO2 and benzylparaben (BzP), were further tested with the algae. For nano-TiO2 72 h EC50 value was 2.27 mgL-1 and for BzP it was 10.61 mgL-1. In addition, D. magna was exposed to selected binary mixtures of the target compounds i.e. nano-TiO2+BP3, nano-TiO2+BzP and BP3+BzP On the endpoint of 48 h, a synergistic action was observed for nano-TiO2+BP3 and nano-TiO2+BzP, but an antagonistic effect occurred in the mixture BP3+BzP. These findings suggest that nano-TiO2 can increase the toxicity of the mixture when combined with other compounds.


Subject(s)
Aquatic Organisms/drug effects , Parabens/toxicity , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Drug Interactions , Particle Size , Titanium/chemistry
7.
Sensors (Basel) ; 19(18)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546788

ABSTRACT

Carbon screen-printed electrode (SPCE), multi-walled carbon nanotubes modified screen-printed electrode (SPCNTE), carbon nanofibers modified screen-printed electrode (SPCNFE), and graphene modified screen-printed electrode (SPGPHE) were in a pioneer way tested as sensors for the simultaneous determination of the two most consumed pain-killers, paracetamol (PA) and ibuprofen (IB), and the stimulant caffeine (CF) in water by differential pulse voltammetry (DPV). Their analytical performances were compared, and the resulting sensitivities (2.50, 0.074, and 0.24 µA V mg-1 L for PA, IB, and CF, respectively), detection limits (0.03, 0.6, and 0.05 mg L-1 for PA, IB, and CF, respectively) and quantification limits (0.09, 2.2, and 0.2 mg L-1 for PA, IB, and CF, respectively) suggested that the SPCNFE was the most suitable carbon-based electrode for the voltammetric determination of the selected analytes in water at trace levels. The methodology was validated using both spiked tap water and hospital wastewater samples. The results were compared to those achieved by liquid chromatography-tandem mass spectrometry (LC-MS/MS), the technique of choice for the determination of the target analytes.


Subject(s)
Acetaminophen/analysis , Caffeine/analysis , Electrochemistry/instrumentation , Electrodes , Ibuprofen/analysis , Electrochemistry/methods , Limit of Detection , Nanostructures/chemistry , Nanotubes, Carbon/chemistry , Reproducibility of Results , Wastewater/analysis , Water Pollutants, Chemical/analysis
8.
Environ Res ; 161: 532-539, 2018 02.
Article in English | MEDLINE | ID: mdl-29232646

ABSTRACT

UV filters (UV-Fs) are a group of hormonally active chemical compounds used to protect against the deleterious effects of UVA and UVB solar radiation, which are currently present in most consumer goods (personal care products, plastics, fabrics, paints, etc). Last years the concern about these emerging contaminants has been on the rise, and increasing efforts are being taken in order to properly asses the hazard that the exposure to these compounds in the early stages of life may pose. In this study, a new method for the analysis of 11 UV-Fs residues in human breast milk samples has been developed. The method is based on turbulent flow chromatography coupled to liquid chromatography-tandem mass spectrometry (TFC-HPLC-MS/MS). The validated method was successfully applied to 79 human breast milk samples from mothers in Barcelona (Spain). Twenty-four per cent of the samples contained UV-Fs, with major contributors being oxybenzone (benzophenone 3, BP3), its metabolite 4,4'-dihydroxybenzophenone (4DHB), and UV320 showing maximum concentrations of 779.9, 73.3, and 523.6ngg-1 milk, respectively. Additionally, the plastic containers of the milks were also analysed, revealing high concentrations of BP3 and 4DHB, up to 10.6µgg-1 plastic. The calculated mean ΣUV-Fs were useful to estimate the daily intake (EDI) by babies, which were 69.1µg d-1kg-1 body weight.


Subject(s)
Sunscreening Agents , Tandem Mass Spectrometry , Adult , Chromatography, Liquid , Female , Humans , Infant , Milk, Human/chemistry , Spain , Sunscreening Agents/analysis
9.
Environ Sci Technol ; 51(19): 10983-10990, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28870065

ABSTRACT

The present study uses bird eggs of seven wild species as a biomonitoring tool for sunscreens occurrence. Seven UV filters (UV-Fs), including 3 hydroxy-metabolites of oxybenzone (benzophenone 3, BP3) were characterized in unhatched eggs from Doñana Natural Space (Spain). High frequency of detection was observed for all UV-Fs, ranging from 95% to 100%. The oxybenzone metabolite 4-hydroxybenzophenone (4HB) was ubiquitous at concentrations in the range 12.0-3348 ng g-1 dry weight (dw). The parent compound, oxybenzone, was also present in all samples at lower concentrations (16.9-49.3 ng g-1 dw). Due to the three BP3's metabolites, benzophenone 1 (BP1), 4HB, and 4,4'-dihydroxybenzophenone (4DHB) presence in unhatched eggs, it can be inferred that parent compounds are absorbed into the bird through the upper gut and the OH-derivatives formed are transferred by the mother to the egg before the lying. White stork (Ciconia ciconia) and western marsh harrier (Circus aeruginosus) were the most contaminated species, with mean total UV-Fs concentrations of 834 and 985 ng g-1 dw, respectively. Results evidenced that biomagnification process across the bird species studied cannot be ruled out.


Subject(s)
Animals, Wild/metabolism , Benzophenones/chemistry , Benzophenones/metabolism , Birds/metabolism , Sunscreening Agents/analysis , Animals , Eggs , Environmental Monitoring/methods , Spain , Sunscreening Agents/chemistry , Ultraviolet Rays
10.
Environ Res ; 145: 126-134, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26674115

ABSTRACT

The hazardous potential of organic UV filters (UV-Fs) is becoming an issue of great concern due to the widespread application of these compounds in most daily-use goods, such as hygiene and beauty products. Nanomaterials (NMs) have also been used in personal care products (PCPs) for many years. Nowadays, both classes of chemicals are considered environmental emerging contaminants. Despite some studies performed in vitro and in vivo reported adverse effects of many UV-Fs on the normal development of organisms, there is scarce data regarding acute and chronic toxicity. The aim of the present study was to determine the EC50 values of selected UV-Fs using standardised toxicity assays on three aquatic species i.e. Daphnia magna, Raphidocelis subcapitata and Vibrio fischeri. EC50 values obtained were in the mgl(-1) range for all the species. The estimated toxicity data allowed us to assess the environmental risk posed by selected UV-Fs in urban groundwater from Barcelona (Spain). The calculated ecological risk indicated a negligible impact on the aquifer. Giving the increasing importance of studying mixtures of pollutants and due to the widespread presence of nanomaterials (NMs) in the aquatic environment, other objective of this work was to explore the response on D. magna after exposure to both binary combinations of UV-Fs among them and UV-F with NMs. In all cases but the nano-silver mixtures, joint toxicity was mitigated or even eradicated.


Subject(s)
Aquatic Organisms/drug effects , Environmental Monitoring/methods , Groundwater/chemistry , Nanostructures/toxicity , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Animals , Daphnia/drug effects , Drug Interactions , Ecotoxicology , Nanostructures/analysis , Silver/analysis , Silver/toxicity , Spain , Sunscreening Agents/analysis , Toxicity Tests, Acute , Urbanization , Water Pollutants, Chemical/analysis
11.
Anal Chem ; 86(11): 5579-86, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24796379

ABSTRACT

Four previously unreported metabolism products of sulfaquinoxaline (SQX), a widely used veterinary medicine, were isolated and analyzed using liquid chromatography coupled to high-resolution Orbitrap mass spectrometry. Metabolites were structurally elucidated, and a fragmentation pathway was proposed. The combination of high-resolution MS(2) spectra, linear ion trap MS(2), in-source collision-induced dissociation (CID) fragmentation, and photolysis were used to analyze SQX and its metabolites. All metabolism products identified showed a similar fragmentation pattern to that of the original drug. Differential product ions were produced at m/z 162 and 253 which contain the radical moiety with more 16 Da units than sulfaquinoxaline. This occurs by a hydroxyl attachment to the quinoxaline moiety. With the exception of two low-intensity compounds, all the mass errors were below 5.0 ppm. The distribution of these metabolites in some animal species are also presented and discussed.


Subject(s)
Sulfaquinoxaline/chemistry , Animals , Biotransformation , Cattle , Chromatography, High Pressure Liquid , Hydroxyl Radical/chemistry , Hydroxylation , Indicators and Reagents , Liver/chemistry , Mass Spectrometry , Poultry , Sheep , Sulfaquinoxaline/metabolism , Tissue Distribution
12.
Environ Pollut ; 342: 122967, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38030113

ABSTRACT

Microplastic (MP) pollution has emerged as a pressing environmental issue, with its impacts on ecosystems and human health yet to be fully understood. This study aims to investigate the presence and distribution of MPs in the soil of a managed aquifer recharge (MAR) system, built with different reactive barriers of natural materials and irrigated with the secondary effluent of a wastewater treatment plant (WWTP). MPs were extracted from reactive barrier material following an approach based on the density separation of MPs with posterior oxidant digestion, combined with visual and chemical characterisation by Fourier-Transform Infrared Spectroscopy (FTIR). The results revealed the widespread occurrence of MPs in the MAR soil samples. MPs concentration in the different barrier materials ranged from 60 to 236 n kg-1. The most dominant morphologies were fragments (60%) and fibers (17%), and the most abundant colour was white (51%), followed by transparent MPs (20%). Polypropylene (PP) was detected in all the samples with an abundance of 47%, followed by polyethylene (PE, 34%). The interplay of barrier composition significantly influences the retention of MPs, with compost (T5) and woodchips (T4) exhibiting the most notable retention rates. Remarkably, the outer layers of the reactive barriers display superior retention compared to the deeper layers. The findings of this study demonstrate the good performance of the MAR system in retaining MPs and contribute to the growing body of knowledge on MPs pollution in freshwater systems while providing insights into the dynamics of MPs transport and accumulation in soil. Such information can inform the development of effective wastewater management strategies to mitigate the impacts of these pollutants on water resources and safeguard the environment.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Pollutants , Humans , Microplastics , Wastewater , Plastics , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring , Soil
13.
J Hazard Mater ; 465: 133377, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38237439

ABSTRACT

The regeneration of wastewater has been recognized as an effective strategy to counter water scarcity. Nonetheless, Wastewater Treatment Plant (WWTP) effluents still contain a wide range of contaminants of emerging concern (CECs) even after water depuration. Filtration through Soil Aquifer Treatment (SAT) systems has proven efficient for CECs removal although the attenuation of their associated biological effects still remains poorly understood. To evaluate this, three pilot SAT systems were monitored, two of them enhanced with different reactive barriers. SATs were fed with secondary effluents during two consecutive campaigns. Fifteen water samples were collected from the WWTP effluent, below the barriers and 15 m into the aquifer. The potential attenuation of effluent-associated biological effects by SATs was evaluated through toxicogenomic bioassays using zebrafish eleutheroembryos and human hepatic cells. Transcriptomic analyses revealed a wide range of toxic activities exerted by the WWTP effluents that were reduced by more than 70% by SAT. Similar results were observed when HepG2 hepatic cells were tested for cytotoxic and dioxin-like responses. Toxicity reduction appeared partially determined by the barrier composition and/or SAT managing and correlated with CECs removal. SAT appears as a promising approach to efficiently reduce effluent-associated toxicity contributing to environmental and human health preservation.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Animals , Humans , Zebrafish , Soil , Water Pollutants, Chemical/analysis , Water/analysis , Environmental Monitoring , Waste Disposal, Fluid
14.
J Contam Hydrol ; 263: 104340, 2024 04.
Article in English | MEDLINE | ID: mdl-38608419

ABSTRACT

The increasing amount of plastic litter worldwide is a serious problem for the environment and its biodiversity, ecosystems, animal and human welfare and the economy. The degradation of these plastics leads to microplastics (MPs), which have been reported for the first time in groundwater in the Canary archipelago. This research investigates the presence of MPs at nine different points on La Palma and El Hierro, where samples were collected in galleries, wells and springs during the month of December 2022. Six different polymers were found with Fourier transform infrared spectroscopy (FTIR) - polypropylene (PP), polyethylene (PE), cellulose (CEL), polyethylene terephthalate (PET), polystyrene (PS) and polymethyl methacrylate (PMMA). The particle concentrations found ranged from 1 to 23 n/L, with a maximum particle size of 1900 µm, the smallest being 35 µm. PP and PE were the most common polymers found in the analysis, associated with the use of packaging, disposable products, textiles and water pipes, related to poorly maintained sewerage networks where leaks occur, allowing these MPs to escape into the environment and end up in groundwater. The detection of microplastic pollution in groundwater emphasises environmental hazards, including biodiversity disruption and water source contamination. Additionally, it presents potential risks to human health by transferring contaminants into the food chain and through respiratory exposure.


Subject(s)
Environmental Monitoring , Groundwater , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Groundwater/chemistry , Groundwater/analysis , Water Pollutants, Chemical/analysis , Islands
15.
Environ Sci Technol ; 47(11): 5619-25, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23627728

ABSTRACT

Most current bioexposure assessments for UV filters focus on contaminants concentrations in fish from river and lake. To date there is not information available on the occurrence of UV filters in marine mammals. This is the first study to investigate the presence of sunscreen agents in tissue liver of Franciscana dolphin (Pontoporia blainvillei), a species under special measures for conservation. Fifty six liver tissue samples were taken from dead individuals accidentally caught or found stranded along the Brazilian coastal area (six states). The extensively used octocrylene (2-ethylhexyl-2-cyano-3,3-diphenyl-2-propenoate, OCT) was frequently found in the samples investigated (21 out of 56) at concentrations in the range 89-782 ng·g(-1) lipid weight. São Paulo was found to be the most polluted area (70% frequency of detection). Nevertheless, the highest concentration was observed in the dolphins from Rio Grande do Sul (42% frequency of detection within that area). These findings constitute the first data reported on the occurrence of UV filters in marine mammals worldwide.


Subject(s)
Acrylates/analysis , Dolphins , Liver/chemistry , Sunscreening Agents/analysis , Water Pollutants, Chemical/analysis , Animals , Brazil , Environmental Monitoring , Female , Lipids/chemistry , Male , Placenta/chemistry , Pregnancy
16.
Mar Pollut Bull ; 187: 114530, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36640500

ABSTRACT

Due to their persistence or continuous discharge, toxic substances are present in the aquatic environment, and can bioaccumulate and biomagnify in the food web, generating a significant ecological risk and a threat to human health. The present study assess the occurrence and tissue (muscle, liver, stomach and gills) distribution of 59 anthropogenic contaminants of emerging concern (CECs) in marine fish from Brazil. A simpler and faster analytical methodology based on vortex-assisted matrix solid-phase dispersion (VA-MSPD) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was developed and validated. Limits of quantification ranged from 3.31 to 114 ng g-1 dw with recovery rates between 60 and 140 % and relative standard deviation below 20 %. The ultraviolet filters 4-hydroxybenzophenone (4HB) (benzophenone-3 metabolite) and benzocaine (Et-PABA), and the antibacterial salicylic acid were frequently accumulated in muscle and liver at concentrations between 39.5 and 21.0 ngg-1 dw. The determined concentrations resulted to be lower than the tolerable daily intake recommended by the European Food Safety Authority (EFSA).


Subject(s)
Fishes , Tandem Mass Spectrometry , Animals , Humans , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Fishes/metabolism , Liver/chemistry , Solid Phase Extraction/methods
17.
Sci Total Environ ; 867: 161466, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36626994

ABSTRACT

The need and availability of freshwater is a major environmental issue, aggravated by climate change. It is necessary to find alternative sources of freshwater. Wastewater could represent a valid option but requires extensive treatment to remove wastewater-borne contaminants, such as contaminants of emerging concern (CECs). It is urgent to develop not only sustainable and effective wastewater treatment techniques, but also water quality assessment methods. In this study, we used polar organic chemical integrative samplers (POCIS) to investigate the presence and abatement of contaminants in an urban wastewater treatment plant (WWTP) and in soil aquifer treatment (SAT) systems (a conventional one and one enhanced with a reactive barrier). This approach allowed us to overcome inter-day and intraday variability of the wastewater composition. Passive sampler extracts were analyzed to investigate contamination from 56 pharmaceuticals and personal care products (PPCPs). Data from the POCIS were used to estimate PPCPs' removal efficiency along the WWTP and the SAT systems. A total of 31 compounds, out of the 56 investigated, were detected in the WWTP influent. Removal rates along WWTP were highly variable (16-100 %), with benzophenone-3, benzophenone-1, parabens, ciprofloxacin, ibuprofen, and acetaminophen as the most effectively removed chemicals. The two SAT systems yielded much higher elimination rates than those achieved through the primary and secondary treatments together. The SAT system that integrated a reactive barrier, based on sustainable materials to promote enhanced elimination of CECs, was significantly more efficient than the conventional one. The removal of the recalcitrant carbamazepine and its epoxy- metabolite was especially remarkable in this SAT, with removal rates between 69-81 % and 63-70 %, respectively.


Subject(s)
Cosmetics , Groundwater , Water Pollutants, Chemical , Water Purification , Wastewater , Soil , Environmental Monitoring/methods , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis
18.
Environ Pollut ; 319: 120958, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36603758

ABSTRACT

Recovery and reuse of nutrients is a major challenge in agriculture. A new process contributing to a circular economy is the anaerobic digestion of food waste, which is a sustainable way of recycling nutrients as the digestate can be used as fertiliser in agriculture and horticulture. However, the digestate may be polluted with contaminants of emerging concern (CECs) that can be circulated back into the food chain, posing a risk to the environment and human health. In this work, the nutrient solution was spiked with 18 selected CECs frequently detected in food waste biogas facilities, and subsequent uptake and fate of these CECs were evaluated in pak choi grown in two different nutrient solutions (mineral and organic). All spiked compounds except two (propylparaben, fenbendazole) were taken up by pak choi plants, with perfluorobutanoic acid (PFBA) and sertraline displaying the highest concentrations (270 and 190 µg/kg fresh weight, respectively). There were no statistically significant differences in uptake between mineral and organic nutrient solutions. Uptake of per- and polyfluoroalkyl substances (PFAS) was negatively correlated with perfluorocarbon chain length and dependent on the functional group (r = -0.73). Sixteen transformation products (TPs) were tentatively identified using suspect screening, most of which were Phase II or even Phase III metabolites. Six of these TPs were identified for the first time in plant metabolism and their metabolic pathways were considered.


Subject(s)
Brassica rapa , Refuse Disposal , Humans , Brassica rapa/metabolism , Food , Biological Transport , Agriculture
19.
Mar Pollut Bull ; 196: 115644, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37922592

ABSTRACT

This study aimed to assess the presence of 21 UVFs and metabolites in coastal regions of the Iberian Peninsula, to evaluate their environmental risk, and identify possible influential factors affecting their measured concentrations. Sampling was carried out in spring and summer to assess possible seasonal variations. UVFs were detected in 43 of the 46 sampling sites. Only 5 were found above LOD: BP4, OC, BP3 and metabolites BP1 and BP8. Samples collected in Mar Menor had the greatest variety of compounds per sample and the highest cumulative concentrations. The risk was characterized using Risk Quotients (RQ). BP1 showed a Low environmental Risk in 2 sites while for OC the RQ indicated a Moderate Risk in 22 points. The variables that contribute most to the variation are population density, sampling season, whether it was an open bay or not, and level of urbanization. The presence of WWTPs had a lower influence.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Environmental Monitoring , Risk Assessment
20.
Anal Bioanal Chem ; 404(9): 2597-610, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22669305

ABSTRACT

The purpose of this article is to summarize biological monitoring information on UV-absorbing compounds, commonly referred as organic UV filters or sunscreen agents, in aquatic ecosystems. To date a limited range of species (macroinvertebrates, fish, and birds), habitats (lakes, rivers, and sea), and compounds (benzophenones and camphors) have been investigated. As a consequence there is not enough data enabling reliable understanding of the global distribution and effect of UV filters on ecosystems. Both liquid chromatography and gas chromatography coupled with mass spectrometry-based methods have been developed and applied to the trace analysis of these pollutants in biota, enabling the required selectivity and sensitivity. As expected, the most lipophilic compounds occur most frequently with concentrations up to 7112 ng g(-1) lipids in mussels and 3100 ng g(-1) lipids (homosalate) in fish. High concentrations have also been reported for 4-methylbenzilidenecamphor (up to 1800 ng g(-1) lipids) and octocrylene (2400 ng g(-1) lipids). Many fewer studies have evaluated the potential bioaccumulation and biomagnification of these compounds in both fresh and marine water and terrestrial food webs. Estimated biomagnification factors suggest biomagnification in predator-prey pairs, for example bird-fish and fish-invertebrates. Ecotoxicological data and preliminary environmental assessment of the risk of UV filters are also included and discussed.


Subject(s)
Biota , Environmental Monitoring/methods , Sunscreening Agents/analysis , Water Pollutants, Chemical/analysis , Animals , Chromatography, Gas/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL