Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Infect Immun ; 87(8)2019 08.
Article in English | MEDLINE | ID: mdl-31138611

ABSTRACT

Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic Escherichia coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal E. coli, both pathogenic enterohemorrhagic E. coli and commensal strains. During a UTI, urease-negative E. coli bacteria thrive, despite the comparative nutrient limitation in urine. The role of ethanolamine as a potential nutrient source during UTIs is understudied. We evaluated the role of the metabolism of ethanolamine as a potential nitrogen and carbon source for UPEC in the urinary tract. We analyzed infected urine samples by culture, high-performance liquid chromatography, reverse transcription-quantitative PCR, and genomic sequencing. The ethanolamine concentration in urine was comparable to the concentration of the most abundant reported urinary amino acid, d-serine. Transcription of the eut operon was detected in the majority of urine samples containing E. coli screened. All sequenced UPEC strains had conserved eut operons, while metabolic genotypes previously associated with UTI (dsdCXA, metE) were mainly limited to phylogroup B2. In vitro ethanolamine was found to be utilized as a sole source of nitrogen by UPEC strains. The metabolism of ethanolamine in artificial urine medium (AUM) induced metabolosome formation and provided a growth advantage at the physiological levels found in urine. Interestingly, eutE (which encodes acetaldehyde dehydrogenase) was required for UPEC strains to utilize ethanolamine to gain a growth advantage in AUM, suggesting that ethanolamine is also utilized as a carbon source. These data suggest that urinary ethanolamine is a significant additional carbon and nitrogen source for infecting E. coli strains.


Subject(s)
Escherichia coli Infections/metabolism , Ethanolamine/metabolism , Urinary Tract Infections/metabolism , Humans , Operon , Polymorphism, Single Nucleotide , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/growth & development
2.
Cancers (Basel) ; 14(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35681574

ABSTRACT

BERENICE (NCT02132949) assessed the cardiac safety of the neoadjuvant−adjuvant pertuzumab−trastuzumab-based therapy for high-risk, HER2-positive early breast cancer (EBC). We describe key secondary objectives at final analysis. Eligible patients received dose-dense doxorubicin and cyclophosphamide q2w × 4 ➝ paclitaxel qw × 12 (Cohort A) or 5-fluorouracil, epirubicin, cyclophosphamide q3w × 4 ➝ docetaxel q3w × 4 (B) as per physician's choice. Pertuzumab−trastuzumab (q3w) was initiated from the taxane start and continued post-surgery to complete 1 year. Median follow-up: 64.5 months. There were no new cardiac issues and a low incidence of Class III/IV heart failure (Cohort B only: one patient (0.5%) in the adjuvant and treatment-free follow-up (TFFU) periods). Fourteen patients (7.7%) had LVEF declines of ≥10% points from baseline to <50% in Cohort A, as did 20 (10.5%) in B during the adjuvant period (12 (6.2%) in A and 7 (3.6%) in B during TFFU). The five-year event-free survival rates in Cohorts A and B were 90.8% (95% CI: 86.5, 95.2) and 89.2% (84.8, 93.6), respectively. The five-year overall survival rates were 96.1% (95% CI: 93.3, 98.9) and 93.8% (90.3, 97.2), respectively. The final analysis of BERENICE further supports pertuzumab−trastuzumab-based therapies as standard of care for high-risk, HER2-positive EBC.

SELECTION OF CITATIONS
SEARCH DETAIL