Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Labelled Comp Radiopharm ; 65(12): 315-322, 2022 10.
Article in English | MEDLINE | ID: mdl-36044030

ABSTRACT

[18 F]SynVesT-1 (also known as [18 F]SDM-8 or [18 F]MNI-1126) is a potent and selective synaptic vesicle glycoprotein 2 (SV2A) positron emission tomography (PET) imaging agent. In order to fulfill the increasing clinical demand of an 18 F-labeled SV2A PET ligand, we have developed a fully automated procedure to provide a sterile and pyrogen-free good manufacturing procedure (GMP)-compliant product of [18 F]SynVesT-1 suitable for clinical studies in humans. [18 F]SynVesT-1 is synthesized via a rapid copper-mediated radiofluorination protocol. The procedure was developed and established on a commercially available module, TracerMaker (ScanSys Laboratorieteknik ApS, Copenhagen, Denmark), a synthesis platform originally developed to conduct carbon-11 radiochemistry. From ~130 GBq (end-of-bombardment), our newly developed procedure enabled us to prepare [18 F]SynVesT-1 in an isolated radioactivity yield of 14,220 ± 800 MBq (n = 3), which corresponds to a radiochemical yield (RCY) of 19.5 ± 0.5%. The radiochemical purity (RCP) and enantiomeric purity of each of the final formulated batches exceeded 98%. The overall synthesis time was 90 min and the molar activity was 330 ± 60 GBq/µmol (8.9 ± 1.6 Ci/µmol). The produced [18 F]SynVesT-1 was stable over 8 h at room temperature and is suitable for in vivo PET imaging studies in human subjects.


Subject(s)
Fluorine Radioisotopes , Synaptic Vesicles , Copper , Glycoproteins , Humans , Ligands , Positron-Emission Tomography/methods , Radiochemistry/methods , Radiopharmaceuticals
2.
Chemistry ; 27(34): 8689-8693, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-33885193

ABSTRACT

Electrophilic 11 C-labelled aroyl dimethylaminopyridinium salts, obtained by carbonylative cross-coupling of aryl halides with [11 C]carbon monoxide, were prepared for the first time and shown to be valuable intermediates in the synthesis of primary [11 C]benzamides. The methodology furnished a set of benzamide model compounds, including the two poly (ADP-ribose) polymerase (PARP) inhibitors niraparib and veliparib, in moderate to excellent radiochemical yields. In addition to providing a convenient and practical route to primary [11 C]benzamides, the current method paves the way for future application of [11 C]aroyl dimethylaminopyridinium halide salts in positron emission tomography (PET) tracer synthesis.


Subject(s)
Benzamides , Salts , Carbon Monoxide , Positron-Emission Tomography , Radiopharmaceuticals
3.
J Labelled Comp Radiopharm ; 64(8): 346-352, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34050679

ABSTRACT

We report herein an efficient and fully automated protocol for the radiosynthesis of [18 F]FAPI-74, a new positron emission tomography (PET) radiopharmaceutical for in vivo detection of the fibroblast activation protein. [18 F]FAPI-74 was synthesized via a rapid [18 F]aluminum fluoride coordination reaction, which was first developed on the flexible GE TRACERLab FX2N (FXN) platform and later translated to the cassette-based module Trasis AllInOne (AIO). The results obtained with both modules were comparable in terms of yield and reproducibility. Automation of [18 F]FAPI-74 radiosynthesis on the FXN was carried out in 35 min with a radiochemical yield (RCY) of 18.5 ± 2.5% (n = 5, relative to starting [18 F]fluoride). Method transfer to the AIO platform following minor optimizations allowed for the production of [18 F]FAPI-74 in an isolated RCY of 20 ± 2.5% [n = 3] with an overall synthesis time of 40 min. The radiochemical purity was greater than 95% for [18 F]FAPI-74, obtained from both modules. Overall, the protocol reliably provides a sterile and pyrogen-free good manufacturing practice (GMP) compliant product of [18 F]FAPI-74 suitable for clinical PET imaging.


Subject(s)
Aluminum Compounds , Fluorides
4.
J Labelled Comp Radiopharm ; 63(11): 482-487, 2020 09.
Article in English | MEDLINE | ID: mdl-32726870

ABSTRACT

Bruton's tyrosine kinase (BTK) is a key component in the B-cell receptor signaling pathway and is consequently a target for in vivo imaging of B-cell malignancies as well as in multiple sclerosis (MS) with positron emission tomography (PET). A recent Phase 2b study with Sanofi's BTK inhibitor, Tolebrutinib (also known as [a.k.a.] SAR442168, PRN2246, or BTK'168) showed significantly reduced disease activity associated with MS. Herein, we report the radiosynthesis of [11 C]Tolebrutinib ([11 C]5) as a potential PET imaging agent for BTK. The N-[11 C]acrylamide moiety of [11 C]5 was labeled by 11 C-carbonylation starting from [11 C]CO, iodoethylene, and the secondary amine precursor via a novel palladium-NiXantphos-mediated carbonylation protocol, and the synthesis was fully automated using a commercial carbon-11 synthesis platform (TracerMaker™, Scansys Laboratorieteknik). [11 C]5 was obtained in a decay-corrected radiochemical yield of 37 ± 2% (n = 5, relative to starting [11 C]CO activity) in >99% radiochemical purity, with an average molar activity of 45 GBq/µmol (1200 mCi/µmol). We envision that this methodology will be generally applicable for the syntheses of labeled N-acrylamides.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Carbon Radioisotopes/chemistry , Palladium/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Tolmetin/chemistry , Tolmetin/chemical synthesis , Chemistry Techniques, Synthetic , Positron-Emission Tomography , Protein Kinase Inhibitors/pharmacology , Radiochemistry , Tolmetin/pharmacology
5.
J Labelled Comp Radiopharm ; 63(3): 100-107, 2020 03.
Article in English | MEDLINE | ID: mdl-31524295

ABSTRACT

Transition-metal mediated carbonylation with 11 C-labelled carbon monoxide ([11 C]CO) is a versatile method for introducing 11 C (t1/2 = 20.3 min) into drugs and radioligands for subsequent use in positron emission tomography (PET). The aim of the current study was to perform the 11 C-carbonylation reaction on the interior surface of a stainless-steel loop used for high performance liquid chromatography (HPLC). In the experimental setup, cyclotron produced 11 C-labelled carbon dioxide ([11 C]CO2 ) was converted to [11 C]CO by reduction over heated Molybdenum and swept into an HPLC loop pre-charged with the appropriate reaction mixture. Following a 5 min reaction, the radiochemical purity (RCP) and the trapping efficiency (TE) of the reaction mixture was determined. After optimization, [11 C]N-Benzylbenzamide was obtained in quantitative radiochemical yield (RCY) following a 5 min reaction at room temperature. The methodology was further applied to label [11 C]benzoic acid (RCP≥99%, TE>91%), [11 C]methyl benzoate (RCP≥99%, TE>93%) and [11 C]phthalide (RCP≥99%, TE>88%). A set of pharmaceuticals was finally radiolabelled using non-optimized conditions. Excellent yields were obtained for the histamine-3 receptor radioligand [11 C]AZ13198083, the oncology drug [11 C]olaparib and the dopamine D2 receptor radioligand [11 C]raclopride, whereas a moderate yield was observed for the high-affinity dopamine D2 receptor radioligand [11 C]FLB457. The presented "in-loop" process proved efficient for diverse 11 C-carbonylations, providing [11 C]amides, [11 C]esters and [11 C]carboxylic acids in moderate to excellent RCYs. Based on the advantages associated with performing the radiolabelling step as an integrated part of the purification system, this methodology may become a valuable addition to the toolbox of methodologies used for 11 C-carbonylation of drugs and radioligands for PET.


Subject(s)
Carbon Monoxide/chemistry , Carbon Radioisotopes/chemistry , Isotope Labeling/methods , Amides/chemistry , Ligands , Radiochemistry
6.
J Labelled Comp Radiopharm ; 63(12): 517-522, 2020 10.
Article in English | MEDLINE | ID: mdl-32588452

ABSTRACT

[11 C]carbon monoxide ([11 C]CO) is a versatile synthon for radiolabeling of drug-like molecules for imaging studies with positron emission tomography (PET). We here report the development of a novel, user-friendly, fully automated, and good manufacturing practice (GMP) compliant low-pressure synthesis module for 11 C-carbonylation reactions using [11 C]CO. In this synthesis module, [11 C]CO was reliably prepared from cyclotron-produced [11 C]carbon dioxide ([11 C]CO2 ) by reduction over heated molybdenum and delivered to the reaction vessel within 7 min after end of bombardment, with an overall radiochemical yield (RCY) of 71%. [11 C]AZ13198083, a histamine type-3 receptor ligand, was used as a model compound to assess the functionality of the radiochemistry module. At full batch production conditions (55 µA, 30 min), our newly developed low-pressure 11 C-carbonylation apparatus enabled us to prepare [11 C]AZ13198083 in an isolated radioactivity of 8540 ± 1400 MBq (n = 3). The radiochemical purity of each of the final formulated batches exceeded 99%, and all other quality control tests results conformed with specifications typically set for carbon-11 labeled radiopharmaceuticals. In conclusion, this novel radiochemistry system offers a convenient GMP compliant production drugs and radioligands for imaging studies in human subjects.


Subject(s)
Carbon Monoxide/chemistry , Carbon Radioisotopes/chemistry , Pressure , Radiochemistry/instrumentation , Automation
7.
Bioorg Med Chem Lett ; 29(13): 1624-1627, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31060887

ABSTRACT

Carbon-11 labeled SL25.1188 is a promising reversible monoamine oxidase-B (MAO-B) radioligand that was recently translated for human positron emission tomography (PET) imaging. Herein, we report the development of a novel fluorinated derivative, namely, [18F](S)-3-(6-(3-fluoropropoxy)benzo[d]isoxazol-3-yl)-5-(methoxymethyl)oxazolidin-2-one ([18F]FSL25.1188; [18F]6), as a candidate 18F-labeled MAO-B radioligand, and, its subsequent preclinical evaluation in non-human primates (NHP). [18F]6 was produced and isolated (>6 GBq) with high radiochemical purity (>99%), and molar activity (>100 GBq/µmol at time of injection). Autoradiography studies conducted in post-mortem human brain sections revealed [18F]6 binding in MAO-B rich regions. PET imaging study of [18F]6 in NHP showed high brain uptake (SUV > 2.5) as well as a regional brain radioactivity distribution in accordance with MAO-B expression. [18F]6 displayed favorable in vivo kinetics, with an early peak in the time-activity curve followed by progressive wash-out from the NHP brain. Specificity of [18F]6 was investigated in a pre-treatment study with l-deprenyl (1.0 mg/kg) wherein reduced radioligand uptake was observed in all MAO-B rich regions. Results from the current preclinical investigation suggests [18F]6 is a promising MAO-B PET radioligand. Further evaluation of [18F]6 and structurally related 18F-analogs are underway to identify an optimized candidate for clinical research studies.


Subject(s)
Monoamine Oxidase/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Humans
9.
J Labelled Comp Radiopharm ; 62(7): 292-297, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31083778

ABSTRACT

There is a great demand to develop more cost-efficient and robust manufacturing processes for fluorine-18 (18 F) labelled compounds and radiopharmaceuticals. Herein, we present to our knowledge the first radiofluorination "in-loop," where [18 F]triflyl fluoride was used as the labelling agent. Initial development of the "in-loop" [18 F]fluorination method was optimized by reacting [18 F]triflyl fluoride with 1,4-dinitrobenzene to form [18 F]1-fluoro-4-nitrobenzene. This methodology was then applied for the syntheses of two well-known radiopharmaceuticals, namely, [18 F]T807 for imaging of tau protein and [18 F]FEPPA for imaging the translocator protein 18 KDa. Both radiotracers were synthesized and formulated using an automated radiosynthesis module with nondecay corrected radiochemical yields of 27% and 29% (relative [18 F]F- ), respectively. The overall syntheses times for [18 F]T807 and [18 F]FEPPA were 65 and 55 minutes, respectively. In these cases, our "in-loop" radiofluorination methodology enabled us to obtain equal or superior yields compared with conventional reactions in a vial. The radiochemical purities were more than 99%, and the molar activities were more than 350 GBq/µmol at the end-of-synthesis for both radiotracers. This novel method is simple, efficient, and allows for a reliable production of radiofluorinated compounds and radiopharmaceuticals.


Subject(s)
Fluorine Radioisotopes/chemistry , Halogenation , Radiochemistry/methods , Cost-Benefit Analysis , Humans , Isotope Labeling , Neuroimaging , Positron-Emission Tomography , Radiochemistry/economics , Receptors, GABA/metabolism , tau Proteins/metabolism
10.
Mol Imaging ; 17: 1536012118792317, 2018.
Article in English | MEDLINE | ID: mdl-30203712

ABSTRACT

The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Inflammation/diagnostic imaging , Neurodegenerative Diseases/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals/chemistry , Receptors, GABA/metabolism , Animals , Humans
11.
Mol Pharm ; 15(2): 695-702, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29298483

ABSTRACT

Dyshomeostasis or abnormal accumulation of metal ions such as copper, zinc, and iron have been linked to the pathogenesis of multiple neurodegenerative disorders including Alzheimer's disease (AD) and Huntington's disease (HD). 5,7-Dichloro-2-((dimethylamino)methyl)quinolin-8-ol, PBT2, is a second generation metal protein-attenuating compound that has recently advanced in Phase II clinical trials for the treatment of AD and HD based on promising preclinical efficacy data. Herein, we report the first radiosynthesis and preclinical positron emission tomography (PET) neuroimaging evaluation of [11C]PBT2 in rodents and nonhuman primates. Carbon-11 labeled PBT2 was synthesized in 4.8 ± 0.5% (nondecay corrected) radiochemical yield (RCY) at end-of-synthesis, based upon [11C]CH3I (n = 6), with >99% radiochemical purity and 80-90 GBq/µmol molar activity (Am) from the corresponding normethyl precursor. In the nonhuman primate brain, [11C]PBT2 uptake was extensive with peak concentration SUVpeak of 3.2-5.2 within 2.5-4.5 min postinjection in all cortical and subcortical gray matter regions (putamen > caudate > cortex ≫ white matter) followed by rapid washout from normal brain tissues. Furthermore, it is shown that [11C]PBT2 binds specifically in AD human brain tissue in vitro. The results presented here, combined with the clinical data available for PBT2, warrant the evaluation of [11C]PBT2 as an exploratory PET radiotracer in humans.


Subject(s)
Carbon Radioisotopes , Clioquinol/analogs & derivatives , Neuroimaging/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals/administration & dosage , Alzheimer Disease/pathology , Animals , Autoradiography , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Clioquinol/administration & dosage , Clioquinol/chemical synthesis , Clioquinol/pharmacokinetics , Drug Evaluation, Preclinical , Female , Humans , Male , Mice, Inbred BALB C , Papio anubis , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics
12.
J Fluor Chem ; 210: 46-55, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30410189

ABSTRACT

Mass spectrometry (MS) has longstanding applications in radiochemistry laboratories, stemming from carbon-dating. However, research on the development of radiotracers for molecular imaging with either positron emission tomography (PET) or single photon emission computed tomography has yet to take full advantage of MS. This inertia has been attributed to the relatively low concentrations of radiopharmaceutical formulations and lack of access to the required MS equipment due to the high costs for purchase and maintenance of specialized MS systems. To date, single quadrupole (SQ)-MS coupled to liquid chromatography (LC) systems is the main form of MS that has been used in radiochemistry laboratories. These LC/MS systems are primarily used for assessing the chemical purity of radiolabeling precursor or standard molecules but also have applications in the determination of metabolites. Herein, we highlight personal experiences using a compact SQ-MS in our PET radiochemistry laboratories, to monitor the small amounts of carrier observed in most radiotracer preparations, even at high molar activities. The use of a SQ-MS in the observation of the low mass associated with non-radioactive species which are formed along with the radiotracer from the trace amounts of carrier found is demonstrated. Herein, we describe a pre-concentration system to detect dilute radiopharmaceutical formulations and metabolite analyses by SQ-MS. Selected examples where SQ-MS was critical for optimization of radiochemical reactions and for unequivocal characterization of radiotracers are showcased. We also illustrate examples where SQ-MS can be applied in identification of radiometal complexes and development of a new purification methodology for Pd-catalyzed radiofluorination reactions, shedding light on the identity of metal complexes present in the labelling solution.

13.
J Labelled Comp Radiopharm ; 61(5): 447-454, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29377217

ABSTRACT

In this article, we describe the carbon-11 (11 C, t1/2  = 20.4 minutes) labeling of benzyl alcohols, benzaldehydes, and ketones using an efficient 2-step synthesis in which 11 C-carbon monoxide is used in an initial palladium-mediated reaction to produce 11 C-benzoyl chloride as a key intermediate. In the second step, the obtained 11 C-benzoyl chloride is further treated with a metalloid reagent to furnish the final 11 C-labeled product. Benzyl alcohols were obtained in moderated to high non-isolated radiochemical yields (RCY, 35%-90%) with lithium aluminum hydride or lithium aluminum deuteride as metalloid reagent. Changing the metalloid reagent to either tributyltin hydride or sodium borohydride, allowed for the reliable syntheses of 11 C-benzaldehydes in RCYs ranging from 58% to 95%. Finally, sodium tetraphenylborate were utilized to obtain 11 C-phenyl ketones in high RCYs (77%-95%). The developed method provides a new and efficient route to 3 different classes of compounds starting from aryl iodides or aryl bromides.


Subject(s)
Benzaldehydes/chemistry , Benzyl Alcohols/chemistry , Carbon Radioisotopes/chemistry , Ketones/chemistry , Radiopharmaceuticals/chemical synthesis , Carbon Monoxide/chemistry , Metalloids/chemistry
14.
J Labelled Comp Radiopharm ; 61(3): 252-262, 2018 03.
Article in English | MEDLINE | ID: mdl-28600835

ABSTRACT

Carbon-11-labeled carbon dioxide is the most common feedstock for the synthesis of positron emission tomography radiotracers and can be directly used for 11 C-carbonylation. Herein, we report the development of an apparatus that takes advantage of "in-loop" technologies to facilitate robust and reproducible syntheses of 11 C-carbonyl-based radiotracers by [11 C]CO2 -fixation. Our "in-loop" [11 C]CO2 -fixation method is simple, efficient, and proceeds smoothly at ambient pressure and temperature. We selected model 11 C-carbonyl-labeled carbamates as well as symmetrical and unsymmetrical ureas based on their widespread use in radiotracer design and our clinical research interests for proof of concept. Utility of this method is demonstrated by the synthesis of a reversible radiopharmaceutical for monoamine oxidase B, [11 C]SL25.1188, and 2 novel fatty acid amide hydrolase inhibitors. These radiotracers were isolated and formulated (>3.5 GBq; 100 mCi) with radiochemical purities (>99%) and molar radioactivity (≥80 GBq/µmol; ≥2162 mCi/µmol).


Subject(s)
Carbon Dioxide/chemistry , Carbon Radioisotopes/chemistry , Chemistry Techniques, Synthetic/instrumentation , Monoamine Oxidase Inhibitors/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Carbamates/chemistry , Chemistry Techniques, Synthetic/methods , Positron-Emission Tomography/methods , Pressure , Proof of Concept Study , Temperature
15.
J Labelled Comp Radiopharm ; 60(13): 624-628, 2017 11.
Article in English | MEDLINE | ID: mdl-28868618

ABSTRACT

A new method for the reduction of no-carrier-added [11 C]carbon dioxide into [11 C]carbon monoxide ([11 C]CO) is described, in which the reductant (zinc) is supported on fused silica particles. Using this setup, which allows for a reduction temperature (485°C) well above the melting point for zinc (420°C), radiochemical yields of up to 96% (decay-corrected) were obtained. A slight decrease in radiochemical yield was observed upon repeated [11 C]CO productions (93 ± 3%, n = 20). The methodology is convenient and efficient and provides a straightforward path to no-carrier-added production of [11 C]CO.


Subject(s)
Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Carbon Radioisotopes/chemistry , Zinc/chemistry , Oxidation-Reduction , Radiochemistry , Temperature
16.
Angew Chem Int Ed Engl ; 56(51): 16218-16222, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29073340

ABSTRACT

Targeting of the human ribosome is an unprecedented therapeutic modality with a genome-wide selectivity challenge. A liver-targeted drug candidate is described that inhibits ribosomal synthesis of PCSK9, a lipid regulator considered undruggable by small molecules. Key to the concept was the identification of pharmacologically active zwitterions designed to be retained in the liver. Oral delivery of the poorly permeable zwitterions was achieved by prodrugs susceptible to cleavage by carboxylesterase 1. The synthesis of select tetrazole prodrugs was crucial. A cell-free in vitro translation assay containing human cell lysate and purified target mRNA fused to a reporter was used to identify active zwitterions. In vivo PCSK9 lowering by oral dosing of the candidate prodrug and quantification of the drug fraction delivered to the liver utilizing an oral positron emission tomography 18 F-isotopologue validated our liver-targeting approach.


Subject(s)
Liver/drug effects , PCSK9 Inhibitors , Proprotein Convertase 9/biosynthesis , Small Molecule Libraries/pharmacology , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/enzymology , Liver/metabolism , Molecular Structure , Proprotein Convertase 9/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship
17.
J Labelled Comp Radiopharm ; 58(5): 220-5, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25820685

ABSTRACT

[(11)C]Carbon monoxide ((11)CO) is a versatile building block for the synthesis of Positron Emission Tomography (PET) radioligands. However, the difficulty of trapping (11)CO in a small solvent volume has limited its utility. We here report an evaluation of a simple, fully automated high-pressure synthesizer prototype for the use in (11)C-carbonylation reactions. [(11)C]Carbon monoxide was easily prepared by online reduction of [(11)C]carbon dioxide using either Mo(s) or Zn(s) as the reducing agent. The conversion yield of (11)CO was >99% when zinc was used as the reducing agent, and the corresponding value for Mo was approximately 71%. When the Zn or Mo column was constantly kept under inert atmosphere, no significant decrease in reducing properties was observed for more than 100 (11)CO productions. However, in our hands, Mo reductant was much easier to service. A total of nine functional groups were successfully radiolabeled using the (11)CO synthesizer prototype. All measured radiochemical yields exceeded 37%, and the (11)CO trapping efficiency was generally above 90%, except for the Suzuki coupling where the trapping efficiency was 80%. This high-pressure synthesizer using [(11)C]carbon monoxide as the labeling precursor is easy to operate allowing for (11)C-carbonylation reactions to be performed in a high yield and in a routinely fashion.


Subject(s)
Carbon Radioisotopes/chemistry , Chemistry Techniques, Synthetic/instrumentation , Pressure , Radiochemistry/instrumentation , Radiopharmaceuticals/chemical synthesis , Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Molybdenum/chemistry , Oxidation-Reduction , Zinc/chemistry
18.
EJNMMI Radiopharm Chem ; 9(1): 35, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696063

ABSTRACT

BACKGROUND: Parkinson's disease is a neurodegenerative disorder that is characterized by a degeneration of the dopaminergic system. Dopamine transporter (DAT) positron emission tomography (PET) imaging has emerged as a powerful and non-invasive method to quantify dopaminergic function in the living brain. The PET radioligand, [18F]FE-PE2I, a cocaine chemical derivative, has shown promising properties for in vivo PET imaging of DAT, including high affinity and selectivity for DAT, excellent brain permeability, and favorable metabolism. The aim of the current study was to scale up the production of [18F]FE-PE2I to fulfil the increasing clinical demand for this tracer. RESULTS: Thus, a fully automated and GMP-compliant production procedure has been developed using a commercially available radiosynthesis module GE TRACERLab FX2 N. [18F]FE-PE2I was produced with a radiochemical yield of 39 ± 8% (n = 4, relative [18F]F- delivered to the module). The synthesis time was 70 min, and the molar activity was 925.3 ± 763 GBq/µmol (250 ± 20 Ci/µmol). The produced [18F]FE-PE2I was stable over 6 h at room temperature. CONCLUSION: The protocol reliably provides a sterile and pyrogen-free GMP-compliant product.

19.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37513867

ABSTRACT

The Pd-Xantphos-mediated 11C-carbonylation protocol (also known as the "Xantphos- method"), due to its simplistic and convenient nature, has facilitated researchers in meeting a longstanding need for preparing 11C-carbonyl-labeled radiopharmaceuticals at ambient pressure for positron emission tomography (PET) imaging and drug discovery. This development could be viewed as a breakthrough in carbon-11 chemistry, as evidenced by the rapid global adoption of the method by the pharmaceutical industry and academic laboratories worldwide. The method has been fully automated for the good manufacturing practice (GMP)-compliant production of novel radiopharmaceuticals for human use, and it has been adapted for "in-loop" reactions and microwave technology; an impressive number of 11C-labeled compounds (>100) have been synthesized. Given the simplicity and efficiency of the method, as well as the abundance of carbonyl groups in bioactive drug molecules, we expect that this methodology will be even more widely adopted in future PET radiopharmaceutical research and drug development.

20.
ACS Chem Neurosci ; 14(20): 3732-3736, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37753876

ABSTRACT

Undesired radiometabolites can be detrimental to the development of positron emission tomography (PET) radioligands. Methods for quantifying radioligand metabolites in brain tissue include ex vivo studies in small animals or labeling and imaging of the radiometabolite(s) of interest. The latter is a time- and resource-demanding process, which often includes multistep organic synthesis. We hypothesized that this process could be replaced by making use of liver microsomes, an in vitro system that mimics metabolism. In this study, rat liver microsomes were used to prepare radiometabolites of the dopamine transporter radioligand [18F]FE-PE2I for in vitro imaging using autoradiography and in vivo imaging using PET in rats and nonhuman primates. The primary investigated hydroxy-metabolite [18F]FE-PE2I-OH ([18F]2) was obtained in a 2% radiochemical yield and >99% radiochemical purity. In vitro and in vivo imaging demonstrated that [18F]2 readily crossed the blood-brain barrier and bound specifically and reversibly to the dopamine transporter. In conclusions, the current study demonstrates the potential of liver microsomes in the production of radiometabolites for translational imaging studies and radioligand discovery.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopaminergic Imaging , Rats , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Microsomes/metabolism , Radiopharmaceuticals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL