ABSTRACT
BACKGROUND: Mycotoxin exposure during pregnancy has been associated with adverse birth outcomes and poor infant growth. We assessed multiple biomarkers and metabolites of exposure to mycotoxins at birth and their associations with birth outcomes and infant growth in 274 newborns in rural Burkina Faso. METHODS: Whole-blood microsamples were analyzed for mycotoxin concentrations in newborns in the Biospecimen substudy nested in the MIcronutriments pour la SAnté de la Mère et de l'Enfant-III trial using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Unadjusted and adjusted associations between mycotoxin exposure, and birth outcomes and infant growth at 6 mo were estimated using linear regression models for continuous outcomes and linear probability models with robust variance estimation for binary outcomes. Infant growth trajectories from birth to 6 mo were compared by exposure status using mixed-effects models with a random intercept for the individual infant and a random slope for the infant's age. RESULTS: Ochratoxin A (OTA) exposure was detected in 38.3% of newborns, with other mycotoxins being detected in the range of 0.36% and 4.01%. OTA exposure was significantly associated with adverse birth outcomes, such as lower birth weight [ß (95% CI): -0.11 kg (-0.21, 0.00); P = 0.042] and ponderal index [ß (95% CI): -0.62 gm/cm3 (-1.19, -0.05); P = 0.034], and a marginally significant lower length growth trajectories during the first 6 mo [ß (95% CI): -0.08 cm/mo (-0.15, 0.0); P = 0.057]. CONCLUSIONS: OTA exposure was prevalent among newborns and also associated with lower growth at birth and during the first 6 mo. The results emphasize the importance of nutrition-sensitive strategies to mitigate dietary OTA, as well as adopting food safety measures in Burkina Faso during the fetal period of development.
ABSTRACT
[This corrects the article DOI: 10.1371/journal.pmed.1004186.].
ABSTRACT
BACKGROUND: Optimal nutrition is crucial during the critical period of the first 1,000 days from conception to 2 years after birth. Prenatal and postnatal supplementation of mothers with multimicronutrient-fortified balanced energy-protein (BEP) supplements is a potential nutritional intervention. However, evidence on the long-term effects of BEP supplementation on child growth is inconsistent. We evaluated the efficacy of daily fortified BEP supplementation during pregnancy and lactation on infant growth in rural Burkina Faso. METHODS AND FINDINGS: A 2 × 2 factorial individually randomized controlled trial (MISAME-III) was implemented in 6 health center catchment areas in Houndé district under the Hauts-Bassins region. From October 2019 to December 2020, 1,897 pregnant women aged 15 to 40 years with gestational age <21 completed weeks were enrolled. Women were randomly assigned to the prenatal intervention arms receiving either fortified BEP supplements and iron-folic acid (IFA) tablets (i.e., intervention) or IFA alone (i.e., control), which is the standard of care during pregnancy. The same women were concurrently randomized to receive either of the postnatal intervention, which comprised fortified BEP supplementation during the first 6 months postpartum in combination with IFA for the first 6 weeks (i.e., intervention), or the postnatal control, which comprised IFA alone for 6 weeks postpartum (i.e., control). Supplements were provided by trained village-based project workers under direct observation during daily home visits. We previously reported the effect of prenatal BEP supplementation on birth outcomes. The primary postnatal study outcome was length-for-age z-score (LAZ) at 6 months of age. Secondary outcomes were anthropometric indices of growth (weight-for length and weight-for-age z-scores, and arm and head circumferences) and nutritional status (prevalence rates of stunting, wasting, underweight, anemia, and hemoglobin concentration) at 6 months. Additionally, the longitudinal prevalence of common childhood morbidities, incidence of wasting, number of months of exclusive breastfeeding, and trajectories of anthropometric indices from birth to 12 months were evaluated. Prenatal BEP supplementation resulted in a significantly higher LAZ (0.11 standard deviation (SD), 95% confidence interval (CI) [0.01 to 0.21], p = 0.032) and lower stunting prevalence (-3.18 percentage points (pp), 95% CI [-5.86 to -0.51], p = 0.020) at 6 months of age, whereas the postnatal BEP supplementation did not have statistically significant effects on LAZ or stunting at 6 months. On the other hand, postnatal BEP supplementation did modestly improve the rate of monthly LAZ increment during the first 12 months postpartum (0.01 z-score/month, 95% CI [0.00 to 0.02], p = 0.030), whereas no differences in growth trajectories were detected between the prenatal study arms. Furthermore, except for the trend towards a lower prevalence of underweight found for the prenatal BEP intervention at 6 months (-2.74 pp, 95% CI [-5.65 to 1.17], p = 0.065), no other secondary outcome was significantly affected by the pre- or postnatal BEP supplementation. CONCLUSIONS: This study provides evidence that the benefits obtained from prenatal BEP supplementation on size at birth are sustained during infancy in terms of linear growth. Maternal BEP supplementation during lactation may lead to a slightly better linear growth towards the second half of infancy. These findings suggest that BEP supplementation during pregnancy can contribute to the efforts to reduce the high burden of child growth faltering in low- and middle-income countries. TRIAL REGISTRATION: ClinicalTrials.gov: NCT03533712.
Subject(s)
Breast Feeding , Thinness , Infant, Newborn , Child , Infant , Female , Humans , Pregnancy , Burkina Faso/epidemiology , Maternal Nutritional Physiological Phenomena , Dietary Supplements , Folic Acid , Lactation , Growth Disorders/epidemiology , Iron , ParturitionABSTRACT
BACKGROUND: Micronutrient-fortified balanced energy-protein (BEP) supplements are promising interventions to prevent intrauterine growth retardation in low- and middle-income countries. On the other hand, one concern with blanket prenatal supplementation programs using energy-dense supplements is that they could lead to more maternal and/or infant overweight. However, evidence is lacking on the potential effect of BEP on maternal and offspring body composition. This study evaluates the effects of micronutrient-fortified BEP supplementation during pregnancy on body composition of mothers and their newborns in rural Burkina Faso. METHODS AND FINDINGS: The MISAME-III study is an open label individually randomized controlled trial where pregnant women (n = 1,897) of gestational age <21 weeks received either a combination of micronutrient-fortified BEP and iron-folic acid (IFA) tablets (i.e., intervention) or IFA alone (i.e., control). The prenatal phase of the MISAME-III study was conducted between the first enrollment in October 2019 and the last delivery in August 2021. In a sub-study nested under the MISAME-III trial, we evaluated anthropometry and body composition in newborns who were born starting from 17 November 2020 (n: control = 368 and intervention = 352) and their mothers (n: control = 185 and intervention = 186). Primary study outcomes were newborn and maternal fat-free mass (FFMI) and fat-mass (FMI) indices. We used the deuterium dilution method to determine FFMI and FMI and %FFM and %FM of total body weight within 1 month postpartum. Our main analysis followed a modified intention-to-treat approach by analyzing all subjects with body composition data available. Univariable and multivariable linear regression models were fitted to compare the intervention and control arms, with adjusted models included baseline maternal age, height, arm fat index, hemoglobin concentration and primiparity, household size, wealth and food security indices, and newborn age (days). At study enrollment, the mean ± SD maternal age was 24.8 ± 6.13 years and body mass index (BMI) was 22.1 ± 3.02 kg/m2 with 7.05% of the mothers were underweight and 11.5% were overweight. Prenatal micronutrient-fortified BEP supplementation resulted in a significantly higher FFMI in mothers (MD (mean difference): 0.45; 95% CI (confidence interval): 0.05, 0.84; P = 0.026) and newborns (MD: 0.28; 95% CI: 0.06, 0.50; P = 0.012), whereas no statistically significant effects were found on FMI. The effect of micronutrient-fortified BEP on maternal FFMI was greater among mothers from food secure households and among those with a better nutritional status (BMI ≥21.0 kg/m2 or mid-upper arm circumference (MUAC) ≥23 cm). Key limitations of the study are the relatively high degree of missing data (approximately 18%), the lack of baseline maternal body composition values, and the lack of follow-up body composition measurements to evaluate any long-term effects. CONCLUSIONS: Micronutrient-fortified BEP supplementation during pregnancy can increase maternal and newborn FFMI, without significant effects on FMI. TRIAL REGISTRATION: ClinicalTrials.gov with identifier NCT03533712.
Subject(s)
Folic Acid , Micronutrients , Infant , Pregnancy , Infant, Newborn , Female , Humans , Adolescent , Young Adult , Adult , Burkina Faso , Dietary Supplements , Iron , Body CompositionABSTRACT
BACKGROUND: Public health and clinical recommendations are established from systematic reviews and retrospective meta-analyses combining effect sizes, traditionally, from aggregate data and more recently, using individual participant data (IPD) of published studies. However, trials often have outcomes and other meta-data that are not defined and collected in a standardized way, making meta-analysis problematic. IPD meta-analysis can only partially fix the limitations of traditional, retrospective, aggregate meta-analysis; prospective meta-analysis further reduces the problems. METHODS: We developed an initiative including seven clinical intervention studies of balanced energy-protein (BEP) supplementation during pregnancy and/or lactation that are being conducted (or recently concluded) in Burkina Faso, Ethiopia, India, Nepal, and Pakistan to test the effect of BEP on infant and maternal outcomes. These studies were commissioned after an expert consultation that designed recommendations for a BEP product for use among pregnant and lactating women in low- and middle-income countries. The initiative goal is to harmonize variables across studies to facilitate IPD meta-analyses on closely aligned data, commonly called prospective meta-analysis. Our objective here is to describe the process of harmonizing variable definitions and prioritizing research questions. A two-day workshop of investigators, content experts, and advisors was held in February 2020 and harmonization activities continued thereafter. Efforts included a range of activities from examining protocols and data collection plans to discussing best practices within field constraints. Prior to harmonization, there were many similar outcomes and variables across studies, such as newborn anthropometry, gestational age, and stillbirth, however, definitions and protocols differed. As well, some measurements were being conducted in several but not all studies, such as food insecurity. Through the harmonization process, we came to consensus on important shared variables, particularly outcomes, added new measurements, and improved protocols across studies. DISCUSSION: We have fostered extensive communication between investigators from different studies, and importantly, created a large set of harmonized variable definitions within a prospective meta-analysis framework. We expect this initiative will improve reporting within each study in addition to providing opportunities for a series of IPD meta-analyses.
Subject(s)
Dietary Supplements , Lactation , Female , Humans , Infant , Infant, Newborn , Pregnancy , Data Collection , Prospective Studies , Retrospective StudiesABSTRACT
BACKGROUND: Providing balanced energy-protein (BEP) supplements is a promising intervention to improve birth outcomes in low- and middle-income countries (LMICs); however, evidence is limited. We aimed to assess the efficacy of fortified BEP supplementation during pregnancy to improve birth outcomes, as compared to iron-folic acid (IFA) tablets, the standard of care. METHODS AND FINDINGS: We conducted an individually randomized controlled efficacy trial (MIcronutriments pour la SAnté de la Mère et de l'Enfant [MISAME]-III) in 6 health center catchment areas in rural Burkina Faso. Pregnant women, aged 15 to 40 years with gestational age (GA) <21 completed weeks, were randomly assigned to receive either fortified BEP supplements and IFA (intervention) or IFA (control). Supplements were provided during home visits, and intake was supervised on a daily basis by trained village-based project workers. The primary outcome was prevalence of small-for-gestational age (SGA) and secondary outcomes included large-for-gestational age (LGA), low birth weight (LBW), preterm birth (PTB), gestational duration, birth weight, birth length, Rohrer's ponderal index, head circumference, thoracic circumference, arm circumference, fetal loss, and stillbirth. Statistical analyses followed the intention-to-treat (ITT) principle. From October 2019 to December 2020, 1,897 pregnant women were randomized (960 control and 937 intervention). The last child was born in August 2021, and birth anthropometry was analyzed from 1,708 pregnancies (872 control and 836 intervention). A total of 22 women were lost to follow-up in the control group and 27 women in the intervention group. BEP supplementation led to a mean 3.1 percentage points (pp) reduction in SGA with a 95% confidence interval (CI) of -7.39 to 1.16 (P = 0.151), indicating a wide range of plausible true treatment efficacy. Adjusting for prognostic factors of SGA, and conducting complete cases (1,659/1,708, 97%) and per-protocol analysis among women with an observed BEP adherence ≥75% (1,481/1,708, 87%), did not change the results. The intervention significantly improved the duration of gestation (+0.20 weeks, 95% CI 0.05 to 0.36, P = 0.010), birth weight (50.1 g, 8.11 to 92.0, P = 0.019), birth length (0.20 cm, 0.01 to 0.40, P = 0.044), thoracic circumference (0.20 cm, 0.04 to 0.37, P = 0.016), arm circumference (0.86 mm, 0.11 to 1.62, P = 0.025), and decreased LBW prevalence (-3.95 pp, -6.83 to -1.06, P = 0.007) as secondary outcomes measures. No differences in serious adverse events [SAEs; fetal loss (21 control and 26 intervention) and stillbirth (16 control and 17 intervention)] between the study groups were found. Key limitations are the nonblinded administration of supplements and the lack of information on other prognostic factors (e.g., infection, inflammation, stress, and physical activity) to determine to which extent these might have influenced the effect on nutrient availability and birth outcomes. CONCLUSIONS: The MISAME-III trial did not provide evidence that fortified BEP supplementation is efficacious in reducing SGA prevalence. However, the intervention had a small positive effect on other birth outcomes. Additional maternal and biochemical outcomes need to be investigated to provide further evidence on the overall clinical relevance of BEP supplementation. TRIAL REGISTRATION: ClinicalTrials.gov NCT03533712.
Subject(s)
Micronutrients , Premature Birth , Birth Weight , Burkina Faso/epidemiology , Dietary Supplements , Female , Fetal Growth Retardation/epidemiology , Fetal Growth Retardation/prevention & control , Folic Acid , Humans , Infant, Newborn , Iron , Pregnancy , Premature Birth/epidemiology , Premature Birth/prevention & control , Stillbirth/epidemiologyABSTRACT
BACKGROUND: Panel data indicate that nonpregnant women's dietary diversity fluctuates across climatic seasons in low- and middle-income countries. The natural day-to-day variability in food group consumption during gestation is unknown. OBJECTIVES: A longitudinal study was conducted among pregnant women enrolled in the Micronutriments pour la Santé de la Mère et de l'Enfant study 3 randomized controlled efficacy trial [i.e., daily fortified balanced energy-protein supplement and an iron-folic acid (IFA) tablet compared with an IFA tablet only] to investigate the number of 24-hour recalls required to estimate usual prenatal food group (FG) diversity and the seasonality of pregnant women's dietary diversity in Houndé, Burkina Faso. METHODS: FG consumption was assessed twice weekly by qualitative, list-based, 24-hour recalls among 1757 pregnant women (892 control, 865 intervention). The number of days needed to estimate a woman's usual prenatal 10-point FG diversity score was calculated using the within-subject coefficient of variation. Regression models, including truncated Fourier series, were fitted to assess seasonal variations in the FG diversity score and the probability of reaching Minimum Dietary Diversity for Women (MDD-W; i.e., ≥5 FGs). RESULTS: The monthly mean FG scores (<5 FGs) and MDD-W prevalence (<45%) were low. Five list-based recalls allowed observed FG diversity to lie within 15% of the true mean in 90% of the estimations (mean ± SD, 40.4 ± 20.7 recalls per woman). Both the FG diversity score and prevalence achieving MDD-W showed responsiveness to seasonal variations, with peaks at the end of the dry season (i.e., April or May) and troughs in the rainy season (i.e., August). CONCLUSIONS: Five list-based recalls are sufficient to estimate usual FG diversity during gestation, although intra-annual seasonal patterns did modestly affect the FG diversity score and MDD-W prevalence. Thus, timing of repeated dietary surveys is critical to ensure nonbiased inferences of change and trends in Burkina Faso. This trial was registered at clinicaltrials.gov as NCT03533712.
Subject(s)
Diet , Pregnant Women , Burkina Faso/epidemiology , Female , Folic Acid , Humans , Iron , Longitudinal Studies , Pregnancy , Rural PopulationABSTRACT
BACKGROUND: Anemia and suboptimal gestational weight gain (GWG) are associated with adverse maternal and birth outcomes. Limited research indicates that balanced energy-protein (BEP) supplements reduce the incidence of inadequate GWG. OBJECTIVES: We assessed the efficacy of a micronutrient-fortified BEP supplement on the secondary outcomes of anemia, GWG, GWG rate, and GWG in relation to the Institute of Medicine (IOM)'s recommendations, as compared with an iron-folic acid (IFA) tablet. METHODS: We conducted a randomized controlled trial in Burkina Faso, among pregnant women (15-40 y old) enrolled at <21 weeks of gestation. Women received either BEP and IFA (intervention) or IFA (control). Hemoglobin (g/dL) concentrations were measured at baseline and the third antenatal care visit (ANC), whereas maternal weight was measured at baseline and all subsequent â¼7-weekly ANCs. GWG (kg) was calculated as a woman's last weight measurement (at â¼36 weeks of gestation) minus weight at enrollment, whereas GWG rate (kg/wk) was GWG divided by the time between the first and last weight measurements. GWG adequacy (%) was computed as GWG divided by the IOM's recommendation. Binary outcomes included severely inadequate, inadequate, and excessive GWG. Statistical analyses followed the intention-to-treat principle. Linear regression and probability models were fitted for the continuous and binary outcomes, respectively, adjusting for baseline measurements. RESULTS: Women in the BEP group tended to have higher, but nonsignificantly different, GWG (0.28 kg; 95% CI: -0.05, 0.58 kg; P = 0.099). Furthermore, there were no significant differences in prenatal anemia prevalence, GWG rate, GWG adequacy, or incidence of inadequate or excessive GWG. Findings were robust to model adjustments and complete case and per protocol analyses. CONCLUSIONS: This trial does not provide evidence that fortified BEP supplementation reduces maternal anemia or increases GWG, as compared with IFA. In conjunction with the small, but positive, effects of maternal BEP supplementation on birth outcomes, our findings warrant the investigation of additional biochemical and postnatal outcomes.This trial was registered at clinicaltrials.gov as NCT03533712.
Subject(s)
Anemia , Gestational Weight Gain , Anemia/epidemiology , Anemia/prevention & control , Burkina Faso/epidemiology , Dietary Supplements/adverse effects , Female , Folic Acid , Humans , Iron , Micronutrients , Pregnancy , Pregnant WomenABSTRACT
BACKGROUND: In many low- and middle-income countries, the prevalence of energy and nutrient deficiencies is high among pregnant women. Balanced energy-protein (BEP) supplements are a promising strategy to cover nutritional requirements during pregnancy and improve birth outcomes. However, the displacement of nutrient-dense foods by BEP might attenuate the efficacy of supplementation. OBJECTIVE: This cross-sectional study of participants in a randomized controlled trial evaluated the difference in energy and macro- and micronutrient intakes, food groups, and nutrient adequacy between a control and intervention group receiving either a daily iron-folic acid (IFA) tablet or IFA and BEP supplement during pregnancy, respectively. METHODS: We collected a single multiple-pass 24-h recall from 470 pregnant women from the MIcronutriments pour la SAnté de la Mère et de l'Enfant (MISAME) III study that investigates the efficacy of BEP supplementation on birth outcomes and infant growth. Dietary intake (median and IQR) and nutrient adequacy were assessed using individual recipes and preparation methods of mixed dishes for each participant. Linear regression models were fitted to compare energy and nutrient intakes. RESULTS: Dietary energy, and macro- and micronutrient intakes were significantly higher among women in the intervention group when including BEP [2329 kcal/d (1855, 3008 kcal/d) compared with 1942 kcal/d (1575, 2405 kcal/d) in the control group (all P < 0.001)]. The difference in median energy intake (448 kcal/d; 95% CI: 291, 605 kcal/d) was approximately equivalent to a daily dose of the BEP supplement (393 kcal). Nutrient adequacy ratios for both groups were low for all micronutrients (between 0.02 and 0.66), when excluding BEP (except iron and folic acid, due to standard supplemental doses) from analysis. However, nutrient intakes increased to the Estimated Average Requirement for pregnant women when including BEP supplements. CONCLUSIONS: BEP supplementation increases energy and macro- and micronutrient intakes among pregnant women and fills nutrient gaps without displacing food intake. This trial was registered at clinicaltrials.gov as NCT03533712 (https://clinicaltrials.gov/ct2/show/NCT03533712).
Subject(s)
Dietary Supplements , Pregnant Women , Burkina Faso , Cross-Sectional Studies , Eating , Female , Food, Fortified , Humans , Infant , Micronutrients , Nutrients , PregnancyABSTRACT
BACKGROUND: Severe acute malnutrition (SAM) can be diagnosed using weight-for-height Z-score (WHZ) and/or mid-upper arm circumference (MUAC). Although some favor using MUAC alone, valuing its presumed ability to identify children at greatest need for nutritional care, the functional severity and physiological responses to treatment in children with varying deficits in WHZ and MUAC remain inadequately characterized. OBJECTIVE: We aimed to compare clinical and biochemical responses to treatment in children with 1) both low MUAC and low WHZ, 2) low MUAC-only, and 3) low WHZ-only. METHODS: A multicenter, observational cohort study was conducted in children aged 6-59 mo with nonedematous, uncomplicated SAM in Bangladesh, Burkina Faso, and Liberia. Anthropometric measurements and critical indicators were collected 3 times during treatment; metrics included clinical status, nutritional status, viability, and serum leptin, a biomarker of mortality risk in SAM. RESULTS: Children with combined MUAC and WHZ deficits had greater increases in leptin levels during treatment than those with low MUAC alone, showing a 34.4% greater increase on the second visit (95% confidence interval [CI]: 7.6%, 43.6%; P = 0.02) and a 34.3% greater increase on the third visit (95% CI: 13.2%, 50.3%; P = 0.01). Similarly, weight gain velocity was higher by 1.56 g/kg/d in the combined deficit group (95% CI: 0.38, 2.75; P = 0.03) compared with children with low MUAC-only. Children with combined deficits had higher rates of iron deficiency and wasting while those with low WHZ alone and combined deficits had higher rates of tachypnea and pneumonia during treatment. CONCLUSIONS: Given the comparable treatment responses of children with low WHZ alone and those with low MUAC alone, and the greater vulnerability at admission and during treatment in those with combined deficits, our findings support retaining WHZ as an independent diagnostic and admission criterion of SAM, alongside MUAC. This trial was registered at www. CLINICALTRIALS: gov/study/NCT03400930 as NCT03400930.
Subject(s)
Severe Acute Malnutrition , Humans , Male , Female , Infant , Severe Acute Malnutrition/therapy , Child, Preschool , Bangladesh/epidemiology , Burkina Faso , Cohort Studies , Nutritional Status , Liberia , Leptin/blood , Body WeightABSTRACT
Fortified balanced energy-protein (BEP) supplementation is a promising intervention for improving maternal health, birth outcomes and infant growth in low- and middle-income countries. This nested biospecimen sub-study aimed to evaluate the physiological effect of multi-micronutrient-fortified BEP supplementation on pregnant and lactating women and their infants. Pregnant women (15-40 years) received either fortified BEP and iron-folic acid (IFA) (intervention) or IFA only (control) throughout pregnancy. The same women were concurrently randomized to receive either a fortified BEP supplement during the first 6 months postpartum in combination with IFA for the first 6 weeks (i.e., intervention) or the postnatal standard of care, which comprised IFA alone for 6 weeks postpartum (i.e., control). Biological specimens were collected at different timepoints. Multi-omics profiles will be characterized to assess the mediating effect of BEP supplementation on the different trial arms and its effect on maternal health, as well as birth and infant growth outcomes. The mediating effect of the exposome in the relationship between BEP supplementation and maternal health, birth outcomes and infant growth were characterized via biomonitoring markers of air pollution, mycotoxins and environmental contaminants. The results will provide holistic insight into the granular physiological effects of prenatal and postnatal BEP supplementation.
Subject(s)
Biological Monitoring , Infant Health , Pregnancy , Infant , Infant, Newborn , Humans , Female , Burkina Faso , Lactation , Multiomics , Folic Acid , Iron , Dietary Supplements , Randomized Controlled Trials as TopicABSTRACT
INTRODUCTION: Adequate nutrition during pregnancy is crucial to both mother and child. Maternal malnutrition can be the cause of stillbirth or lead to poor birth outcomes such as preterm delivery and small-for-gestational-age newborns. There is a probable positive effect of providing pregnant women a balanced energy-protein (BEP) food supplement, but more evidence is needed. The MIcronutriments pour la SAnté de la Mère et de l'Enfant (MISAME) III project aims to improve birth outcomes and infant growth by testing a BEP supplement during pregnancy and lactation in rural Burkina Faso. This paper describes the study protocol. METHODS AND ANALYSIS: MISAME-III is a four-arm individually randomised efficacy trial implemented in six rural health centre catchments areas in the district of Houndé. Eligible pregnant women, aged between 15 and 40 years old and living in the study areas, will be enrolled. Women will be randomly assigned to one of the four study groups: (1) prenatal intervention only, (2) postnatal intervention only, (3) prenatal and postnatal intervention or (4) no prenatal or postnatal intervention. The intervention group will receive the BEP supplement and iron/folic acid (IFA) tablets, while the control group will only receive the IFA tablets following the national health protocol. Consumption will be supervised by trained village women on a daily basis by means of home visits. The primary outcomes are small-for-gestational age at birth and length-for-age z-score at 6 months of age. Secondary outcomes will be measured at birth and during the first 6 months of the infants' life. Women will be enrolled from October 2019 until the total sample size is reached. ETHICS AND DISSEMINATION: MISAME-III has been reviewed and approved by the University Hospital of Ghent and the ethics committee of Centre Muraz, Burkina Faso. Informed consent will be obtained. Results will be published in relevant journals and shared with other researchers and public health institutions. TRIAL REGISTRATION NUMBER: NCT03533712.
Subject(s)
Breast Feeding , Dietary Supplements , Adolescent , Adult , Burkina Faso , Child , Child, Preschool , Female , Folic Acid , Humans , Infant , Infant, Newborn , Lactation , Pregnancy , Randomized Controlled Trials as Topic , Young AdultABSTRACT
BACKGROUND AND OBJECTIVES: Use of mid-upper arm circumference (MUAC) as a single screening tool for severe acute malnutrition (SAM) assumes that children with a low weight-for-height z score (WHZ) and normal MUAC have lower risks of morbidity and mortality. However, the pathophysiology and functional severity associated with different anthropometric phenotypes of SAM have never been well characterized. We compared clinical characteristics, biochemical features, and health and nutrition histories of nonedematous children with SAM who had (1) low WHZ only, (2) both low WHZ and low MUAC, or (3) low MUAC only. METHODS: In Bangladesh, Burkina Faso, and Liberia, we conducted a multicentric cohort study in uncomplicated, nonedematous children with SAM and low MUAC only (n = 161), low WHZ only (n = 138), or a combination of low MUAC and low WHZ (n = 152). Alongside routine anthropometric measurements, we collected a wide range of critical indicators of clinical and nutritional status and viability; these included serum leptin, an adipocytokine negatively associated with mortality risk in SAM. RESULTS: Median leptin levels at diagnosis were lower in children with low WHZ only (215.8 pg/mL; P < .001) and in those with combined WHZ and MUAC deficits (180.1 pg/mL; P < .001) than in children with low MUAC only (331.50 pg/mL). The same pattern emerged on a wide range of clinical indicators, including signs of severe wasting, dehydration, serum ferritin levels, and caretaker-reported health deterioration, and was replicated across study sites. CONCLUSIONS: Illustrative of the likely heterogeneous functional severity of the different anthropometric phenotypes of SAM, our results confirm the need to retain low WHZ as an independent diagnostic criterion.
Subject(s)
Severe Acute Malnutrition/diagnosis , Biomarkers/blood , Body Weights and Measures , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Risk Assessment , Severe Acute Malnutrition/bloodABSTRACT
Natural abundances of stable nitrogen and carbon isotopes (δ15N and δ13C) can vary with both dietary intake and metabolic (specifically catabolic) state. In low-income countries, weaning is a period of dietary transition from milk to plant-based foods and a high-risk period for malnutrition. We explored how diet and malnutrition impact hair δ15N and δ13C in young children by an observational, cross-sectional study in Cox's Bazar District, Bangladesh [255 children, 6-59 months with 19.6% wasted (7.1% severely) and 36% stunted (9.8% severely)]. Hair δ15N and δ13C exhibited exponential decreases with age, with the loss of one trophic level (3.3 and 0.8, respectively) from 6 to 48 months, which we associate with the shift from exclusive breastfeeding to complete weaning. After adjustment for age and breastfeeding status, hair isotopic values were unaffected by wasting but lower in severe stunting (-0.45 to -0.6, P < 0.01). In this population of young children, whose isotopic values in hair primarily depended on age, we failed to observe any effect of wasting, likely due to opposite, compensating effects between dietary and metabolic changes involved. In contrast, we evidenced low δ15N and δ13C values in severely stunted children that likely indicate chronic exposure to diets low in animal products.