ABSTRACT
ABSTRACT: We report a first-in-human clinical trial using chimeric antigen receptor (CAR) T cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies. Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T cells. CAR-37 T cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4 of 5 patients. Tumor responses were observed in 4 of 5 patients with 3 complete responses, 1 mixed response, and 1 patient whose disease progressed rapidly and with relative loss of CD37 expression. Three patients experienced prolonged and severe pancytopenia, and in 2 of these patients, efforts to ablate CAR-37 T cells, which were engineered to coexpress truncated epidermal growth factor receptor, with cetuximab were unsuccessful. Hematopoiesis was restored in these 2 patients after allogeneic hematopoietic stem cell transplantation. No other severe, nonhematopoietic toxicities occurred. We investigated the mechanisms of profound pancytopenia and did not observe activation of CAR-37 T cells in response to hematopoietic stem cells in vitro or hematotoxicity in humanized models. Patients with pancytopenia had sustained high levels of interleukin-18 (IL-18) with low levels of IL-18 binding protein in their peripheral blood. IL-18 levels were significantly higher in CAR-37-treated patients than in both cytopenic and noncytopenic cohorts of CAR-19-treated patients. In conclusion, CAR-37 T cells exhibited antitumor activity, with significant CAR expansion and cytokine production. CAR-37 T cells may be an effective therapy in hematologic malignancies as a bridge to hematopoietic stem cell transplant. This trial was registered at www.ClinicalTrials.gov as #NCT04136275.
Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Male , Middle Aged , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Female , Receptors, Chimeric Antigen/immunology , Adult , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Antigens, CD , Aged , Antigens, Neoplasm/immunology , Antigens, CD7/metabolism , Hematopoietic Stem Cell Transplantation , Recurrence , Hematologic Neoplasms/therapy , Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , TetraspaninsABSTRACT
Amyotrophic lateral sclerosis (ALS) is an orphan neurodegenerative disease. Immune system dysregulation plays an essential role in ALS onset and progression. Our preclinical studies have shown that the administration of exogenous allogeneic B cells improves outcomes in murine models of skin and brain injury through a process termed pligodraxis, in which B cells adopt an immunoregulatory and neuroprotective phenotype in an injured environment. Here, we investigated the effects of B-cell therapy in the SOD1G93A mouse preclinical model of ALS and in a person living with ALS. Purified splenic mature naïve B cells from haploidentical donor mice were administered intravenously in SOD1G93A mice for a total of 10 weekly doses. For the clinical study in a person with advanced ALS, IgA gammopathy of unclear significance, and B lymphopenia, CD19+ B cells were positively selected from a healthy haploidentical donor and infused intravenously twice, at a 60-day interval. Repeated intravenous B-cell administration was safe and significantly delayed disease onset, extended survival, reduced cellular apoptosis, and decreased astrogliosis in SOD1G93A mice. Repeated B-cell infusion in a person with ALS was safe and did not appear to generate a clinically evident inflammatory response. An improvement of 5 points on the ALSFRS-R scale was observed after the first infusion. Levels of inflammatory markers showed persistent reduction post-infusion. This represents a first demonstration of the efficacy of haploidentical B-cell infusion in the SOD1G93A mouse and the safety and feasibility of using purified haploidentical B lymphocytes as a cell-based therapeutic strategy for a person with ALS.
Subject(s)
Amyotrophic Lateral Sclerosis , B-Lymphocytes , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/immunology , Animals , Mice , Humans , B-Lymphocytes/immunology , Disease Models, Animal , Mice, Transgenic , Male , Female , Mice, Inbred C57BL , Immunomodulation , Middle AgedABSTRACT
Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.
Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Glioblastoma/immunology , Glioblastoma/therapy , T-Lymphocytes/immunology , Adult , Aged , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dexamethasone/administration & dosage , Glioblastoma/diagnosis , Glioblastoma/genetics , Humans , Middle Aged , Promoter Regions, Genetic/genetics , Receptors, Antigen, T-Cell/immunology , Tumor Suppressor Proteins/genetics , Young AdultABSTRACT
BACKGROUND: Sickle cell disease is characterized by hemolytic anemia, pain, and progressive organ damage. A high level of erythrocyte fetal hemoglobin (HbF) comprising α- and γ-globins may ameliorate these manifestations by mitigating sickle hemoglobin polymerization and erythrocyte sickling. BCL11A is a repressor of γ-globin expression and HbF production in adult erythrocytes. Its down-regulation is a promising therapeutic strategy for induction of HbF. METHODS: We enrolled patients with sickle cell disease in a single-center, open-label pilot study. The investigational therapy involved infusion of autologous CD34+ cells transduced with the BCH-BB694 lentiviral vector, which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA (shmiR), allowing erythroid lineage-specific knockdown. Patients were assessed for primary end points of engraftment and safety and for hematologic and clinical responses to treatment. RESULTS: As of October 2020, six patients had been followed for at least 6 months after receiving BCH-BB694 gene therapy; median follow-up was 18 months (range, 7 to 29). All patients had engraftment, and adverse events were consistent with effects of the preparative chemotherapy. All the patients who could be fully evaluated achieved robust and stable HbF induction (percentage HbF/(F+S) at most recent follow-up, 20.4 to 41.3%), with HbF broadly distributed in red cells (F-cells 58.9 to 93.6% of untransfused red cells) and HbF per F-cell of 9.0 to 18.6 pg per cell. Clinical manifestations of sickle cell disease were reduced or absent during the follow-up period. CONCLUSIONS: This study validates BCL11A inhibition as an effective target for HbF induction and provides preliminary evidence that shmiR-based gene knockdown offers a favorable risk-benefit profile in sickle cell disease. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT03282656).
Subject(s)
Anemia, Sickle Cell/therapy , Fetal Hemoglobin/biosynthesis , Genetic Therapy , RNA Interference , Repressor Proteins/genetics , gamma-Globins/metabolism , Adolescent , Adult , Anemia, Sickle Cell/genetics , Child , Down-Regulation , Female , Fetal Hemoglobin/genetics , Gene Knockdown Techniques , Genetic Vectors , Humans , Male , Pilot Projects , RNA, Small Interfering , Repressor Proteins/metabolism , Transplantation, Autologous , Young Adult , gamma-Globins/geneticsABSTRACT
This corrects the article DOI: 10.1038/nature22991.
ABSTRACT
Effective anti-tumour immunity in humans has been associated with the presence of T cells directed at cancer neoantigens, a class of HLA-bound peptides that arise from tumour-specific mutations. They are highly immunogenic because they are not present in normal tissues and hence bypass central thymic tolerance. Although neoantigens were long-envisioned as optimal targets for an anti-tumour immune response, their systematic discovery and evaluation only became feasible with the recent availability of massively parallel sequencing for detection of all coding mutations within tumours, and of machine learning approaches to reliably predict those mutated peptides with high-affinity binding of autologous human leukocyte antigen (HLA) molecules. We hypothesized that vaccination with neoantigens can both expand pre-existing neoantigen-specific T-cell populations and induce a broader repertoire of new T-cell specificities in cancer patients, tipping the intra-tumoural balance in favour of enhanced tumour control. Here we demonstrate the feasibility, safety, and immunogenicity of a vaccine that targets up to 20 predicted personal tumour neoantigens. Vaccine-induced polyfunctional CD4+ and CD8+ T cells targeted 58 (60%) and 15 (16%) of the 97 unique neoantigens used across patients, respectively. These T cells discriminated mutated from wild-type antigens, and in some cases directly recognized autologous tumour. Of six vaccinated patients, four had no recurrence at 25 months after vaccination, while two with recurrent disease were subsequently treated with anti-PD-1 (anti-programmed cell death-1) therapy and experienced complete tumour regression, with expansion of the repertoire of neoantigen-specific T cells. These data provide a strong rationale for further development of this approach, alone and in combination with checkpoint blockade or other immunotherapies.
Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Melanoma/immunology , Melanoma/therapy , Precision Medicine/methods , Amino Acid Sequence , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, Neoplasm/chemistry , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/adverse effects , Cancer Vaccines/chemistry , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class II/immunology , Humans , Machine Learning , Melanoma/genetics , Mutation , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/prevention & control , Patient Safety , Programmed Cell Death 1 Receptor/antagonists & inhibitorsABSTRACT
PURPOSE: The antigenic targets of immunity and the role of vaccination in breast cancer are unknown. We performed a phase I study of an autologous GM-CSF-secreting breast cancer vaccine in patients with metastatic and stage II-III breast cancer. METHODS: Tumor cells from patients with metastatic (n = 15) and stage II-III (n = 7) disease were transduced with a replication-defective adenoviral vector encoding GM-CSF, and then irradiated. Twelve and seven patients with metastatic and stage II-III disease, respectively, received weekly vaccination for three weeks, followed by every other week until disease progression or vaccine supply was exhausted (metastatic) or until six total vaccine doses were administered (stage II-III). RESULTS: Among those patients with metastatic disease who received vaccinations, eight had progressive disease at two months, three had stable disease for 4-13 months, and one has had no evidence of disease for 13 years. Of the patients with stage II-III disease, five died of metastatic disease between 1.16 and 8.49 years after the start of vaccinations (median 6.24 years) and two are alive as of September 2021. Toxicities included injection site reactions, fatigue, fever, upper respiratory symptoms, joint pain, nausea, and edema. Four of five evaluable patients with metastatic disease developed a skin reaction with immune cell infiltration after the fifth injection of unmodified, irradiated tumor cells. CONCLUSION: We conclude that tumor cells can be harvested from patients with metastatic or stage II-III breast cancer to prepare autologous GM-CSF-secreting vaccines that induce coordinated immune responses with limited toxicity. TRIAL REGISTRATION AND DATE OF REGISTRATION: clinicaltrials.gov, NCT00317603 (April 25, 2006) and NCT00880464 (April 13, 2009).
Subject(s)
Breast Neoplasms , Cancer Vaccines , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cancer Vaccines/toxicity , Feasibility Studies , Female , Genetic Vectors , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , HumansABSTRACT
BACKGROUND AIMS: Adoptive cell therapy employing natural killer group 2D (NKG2D) chimeric antigen receptor (CAR)-modified T cells has demonstrated preclinical efficacy in several model systems, including hematological and solid tumors. We present comprehensive data on manufacturing development and clinical production of autologous NKG2D CAR T cells for treatment of acute myeloid leukemia and multiple myeloma (ClinicalTrials.gov Identifier: NCT02203825). An NKG2D CAR was generated by fusing native full-length human NKG2D to the human CD3ζ cytoplasmic signaling domain. NKG2D naturally associates with native costimulatory molecule DAP10, effectively generating a second-generation CAR against multiple ligands upregulated during malignant transformation including MIC-A, MIC-B and the UL-16 binding proteins. METHODS: CAR T cells were infused fresh after a 9-day process wherein OKT3-activated T cells were genetically modified with replication-defective gamma-retroviral vector and expanded ex vivo for 5 days with recombinant human interleukin-2. RESULTS: Despite sizable interpatient variation in originally collected cells, release criteria, including T-cell expansion and purity (median 98%), T-cell transduction (median 66% CD8+ T cells), and functional activity against NKG2D ligand-positive cells, were met for 100% of healthy donors and patients enrolled and collected. There was minimal carryover of non-T cells, particularly malignant cells; both effector memory and central memory cells were generated, and inflammatory cytokines such as granulocyte colony-stimulating factor, RANTES, interferon-γ and tumor necrosis factor-α were selectively up-regulated. CONCLUSIONS: The process resulted in production of required cell doses for the first-in-human phase I NKG2D CAR T clinical trial and provides a robust, flexible base for further optimization of NKG2D CAR T-cell manufacturing.
Subject(s)
Immunotherapy, Adoptive , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , Cell Line, Tumor , Cell Proliferation , Clinical Trials as Topic , Cytokines/metabolism , Humans , Ligands , Phenotype , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/cytology , Transplantation, AutologousABSTRACT
BACKGROUND: Early-stage and intermediate-stage nasopharyngeal cancer (NPC) generally carry a good prognosis, but for patients with recurrent, metastatic disease, options are limited. In the current study, the authors present a phase 1/2 study to evaluate the efficacy of Epstein-Barr virus (EBV)-stimulated cytotoxic T-lymphocyte (EBV-CTL) immunotherapy in this patient population. METHODS: Screening for patients with active, recurrent, metastatic EBV-associated NPC began in February 2007, and the study was closed to accrual in January 2012. After informed consent was obtained, patients had their blood drawn to initiate manufacturing of the EBV-CTL product. During product manufacturing, patients were placed on interim standard-of-care chemotherapy, and only after disease progression on the interim chemotherapy did patients receive investigational immunotherapy. Patients were restaged every 2 months until disease progression and then followed for survival. RESULTS: A total of 28 patients were enrolled, and 21 patients were treated. There was 1 complete response achieved, and at the time of last follow-up, the patient had been in remission for >8 years since treatment. The median progression-free survival was 2.2 months, and the median overall survival was 16.7 months. Two other patients, after failing EBV-CTL immunotherapy, unexpectedly demonstrated strong responses to the chemotherapy regimens they had previously failed. Patient EBV viral load and EBV-CTL specificity for tumor-associated viral antigens did not appear to correlate with clinical response. CONCLUSIONS: A durable response was observed with EBV-CTL immunotherapy, but the overall response rate for patients with recurrent, metastatic NPC was low. Further research is necessary to increase the efficacy of EBV-specific immunotherapy in patients with incurable NPC, and to characterize mechanisms for refacilitation to chemotherapy. Cancer 2017;123:2642-50. © 2017 American Cancer Society.
Subject(s)
Bone Neoplasms/therapy , Carcinoma/therapy , Immunotherapy, Adoptive/methods , Liver Neoplasms/therapy , Lung Neoplasms/therapy , Nasopharyngeal Neoplasms/therapy , Neoplasm Recurrence, Local/therapy , T-Lymphocytes, Cytotoxic/transplantation , Adult , Aged , Bone Neoplasms/secondary , Carcinoma/pathology , Carcinoma/secondary , Carcinoma/virology , Disease Progression , Disease-Free Survival , Enzyme-Linked Immunospot Assay , Feasibility Studies , Female , Flow Cytometry , Herpesvirus 4, Human/immunology , Humans , Liver Neoplasms/secondary , Lung Neoplasms/secondary , Male , Middle Aged , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/secondary , Nasopharyngeal Neoplasms/virology , Neoplasm Metastasis , Neoplasm Recurrence, Local/virology , Pilot Projects , T-Lymphocytes, Cytotoxic/immunology , Young AdultABSTRACT
Donor lymphocyte infusions are used to treat relapse after allogeneic hematopoietic stem cell transplantation, but responses are inadequate. In addition to effector cells, infusions contain CD25+ regulatory T cells (Treg) that may suppress graft-versus-tumor responses. We undertook a phase I study of donor lymphocyte infusions depleted of CD25+ T cells in patients with hematologic malignancies who had relapsed after transplantation. Twenty-one subjects received CD25/Treg-depleted infusions following removal of CD25+ cells using antibody-conjugated magnetic beads. Sixteen subjects received prior cytoreductive therapy. Four were in complete remission at the time of infusion. Two dose levels were administered: 1×107 (n=6) and 3×107 CD3+ cells/kg (n=15). A median 2.3 log-depletion of CD4+CD25+FOXP3+ Treg was achieved. Seven subjects (33%) developed clinically significant graft-versus-host disease by 1 year, including one patient who died. At dose level 1, five subjects had progressive disease and one had stable disease. At dose level 2, nine subjects (60%) achieved or maintained responses (8 complete responses, 1 partial response), including seven with active disease at the time of infusion. A shorter period between relapse and infusion was associated with response at dose level 2 (P=0.016). The 1-year survival rate was 53% among patients treated with dose level 2. Four of eight subjects with acute myeloid leukemia remained in remission at 1 year. When compared to unmodified donor lymphocyte infusions in 14 contemporaneous patients meeting study eligibility, CD25/Treg depletion was associated with a better response rate and improved event-free survival. Circulating naïve and central memory CD4+ T cells increased after CD25/Treg-depleted infusion, but no immunophenotypic signature for response was noted. CD25/Treg-depleted donor infusion appears feasible and capable of inducing graft-versus-tumor responses without excessive graft-versus-host disease. (ClinicalTrials.gov NCT#00675831).
Subject(s)
Graft vs Tumor Effect , Hematologic Neoplasms/therapy , Interleukin-2 Receptor alpha Subunit/analysis , Lymphocyte Transfusion/methods , T-Lymphocytes, Regulatory/cytology , Adult , Aged , Aged, 80 and over , Female , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Lymphocyte Depletion/methods , Male , Middle Aged , Recurrence , Transplantation, Homologous , Young AdultABSTRACT
BACKGROUND: CD8+ T regulatory (Treg) cells that recognize the nonclassical class 1b molecule Qa-1/human leukocyte antigen E (Q/E CD8+ Treg cells) are important in maintaining self-tolerance. We sought to investigate the role that these T cells play in type 1 diabetes (T1D) pathogenesis and whether an intervention targeting this mechanism may delay T1D progression. METHODS: We conducted a phase 1/2, randomized, double-blind, placebo-controlled trial of the autologous dendritic cell therapy AVT001 that included participants at least 16 years of age, within 1 year of T1D diagnosis, and with ex vivo evidence of a defect in Q/E CD8+ Treg function. Patients were randomly assigned in a 2:1 ratio to AVT001 or placebo, which was administered in three monthly intravenous infusions. The primary end point was safety; efficacy end points included changes from baseline in C-peptide area under the curve (AUC) during a 4-hour mixed meal, hemoglobin A1c (HbA1c), and insulin dose. RESULTS: Sixteen patients received AVT001, and nine received placebo. Similar rates and severity of adverse events were observed in both groups. None of the patients in the AVT001 group had serious adverse events through visit day 360. Compared with placebo, treatment with ATV001 was associated with less decline from baseline log-transformed C-peptide AUC (nmol/l), with the treatment effect between AVT001 and placebo at day 150 of 0.09 (95% confidence interval [CI], 0.03 to 0.15) and at day 360 of 0.10 (95% CI, 0.04 to 0.15). No clear differences in change in HbA1c and insulin dose from baseline were observed between groups. Estimated treatment effects of AVT001 versus placebo at day 360 were -0.17% (95% CI, -0.60 to 0.26%) for HbA1c and -0.06 U/kg/day (95% CI, -0.14 to 0.02) for daily insulin dose. CONCLUSIONS: In this phase 1/2 trial, AVT001 did not result in dose-limiting adverse events. Potential signals of efficacy observed here warrant further evaluation in a fully powered trial. (Funded by Avotres Inc. and the Division of Diabetes, Endocrinology, and Metabolic Diseases; ClinicalTrials.gov number, NCT03895996.).
Subject(s)
Dendritic Cells , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/immunology , Male , Female , Dendritic Cells/immunology , Dendritic Cells/transplantation , Double-Blind Method , Adult , Young Adult , Middle Aged , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Adolescent , T-Lymphocytes, Regulatory/immunology , Insulin/therapeutic use , C-Peptide/blood , C-Peptide/metabolismABSTRACT
Background: In the era of immune checkpoint blockade, the role of cancer vaccines in immune priming has provided additional potential for therapeutic improvements. Prior studies have demonstrated delayed type hypersensitivity and anti-tumor immunity with vaccines engineered to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF). The safety, efficacy and anti-tumor immunity of GM-CSF secreting vaccine in patients with previously treated stage III or IV melanoma needs further investigation. Methods: In this phase II trial, excised lymph node metastases were processed to single cells, transduced with an adenoviral vector encoding GM-CSF, irradiated, and cryopreserved. Individual vaccines were composed of 1x106, 4x106, or 1x107 tumor cells, and were injected intradermally and subcutaneously at weekly and biweekly intervals. The primary endpoints were feasibility of producing vaccine in stage III patients and determining the proportion of patients alive at two years in stage IV patients. Results: GM-CSF vaccine was successfully developed and administered in all 61 patients. Toxicities were restricted to grade 1-2 local skin reactions. The median OS for stage III patients (n = 20) was 71.1 (95% CI, 43.7 to NR) months and 14.9 (95%CI, 12.1 to 39.7) months for stage IV patients. The median PFS in stage III patients was 50.7 (95%CI, 36.3 to NR) months and 4.1 (95% CI, 3.0-6.3) months in stage IV patients. In the overall population, the disease control rate was 39.3% (95%CI, 27.1 to 52.7%). In stage III patients, higher pre-treatment plasma cytokine levels of MMP-1, TRAIL, CXCL-11, CXCL-13 were associated with improved PFS (p<0.05 for all). An increase in post-vaccination levels of IL-15 and TRAIL for stage III patients was associated with improved PFS (p=0.03 for both). Similarly, an increase in post-vaccination IL-16 level for stage IV patients was associated with improved PFS (p=0.02) and clinical benefit. Conclusions: Vaccination with autologous melanoma cells secreting GM-CSF augments antitumor immunity in stage III and IV patients with melanoma, is safe, and demonstrates disease control. Luminex data suggests that changes in inflammatory cytokines and immune cell infiltration promote tumor antigen presentation and subsequent tumor cell destruction. Additional investigation to administer this vaccine in combination with immune checkpoint inhibitors is needed.
ABSTRACT
Invariant natural killer T (iNKT) cells, a unique T cell population, lend themselves for use as adoptive therapy due to diverse roles in orchestrating immune responses. Originally developed for use in cancer, agenT-797 is a donor-unrestricted allogeneic ex vivo expanded iNKT cell therapy. We conducted an open-label study in virally induced acute respiratory distress syndrome (ARDS) caused by the severe acute respiratory syndrome-2 virus (trial registration NCT04582201). Here we show that agenT-797 rescues exhausted T cells and rapidly activates both innate and adaptive immunity. In 21 ventilated patients including 5 individuals receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO), there are no dose-limiting toxicities. We observe an anti-inflammatory systemic cytokine response and infused iNKT cells are persistent during follow-up, inducing only transient donor-specific antibodies. Clinical signals of associated survival and prevention of secondary infections are evident. Cellular therapy using off-the-shelf iNKT cells is safe, can be rapidly scaled and is associated with an anti-inflammatory response. The safety and therapeutic potential of iNKT cells across diseases including infections and cancer, warrants randomized-controlled trials.
Subject(s)
Natural Killer T-Cells , Neoplasms , Respiratory Distress Syndrome , Humans , Cytokines/metabolism , Anti-Inflammatory AgentsABSTRACT
To treat unilateral limbal stem cell (LSC) deficiency, we developed cultivated autologous limbal epithelial cells (CALEC) using an innovative xenobiotic-free, serum-free, antibiotic-free, two-step manufacturing process for LSC isolation and expansion onto human amniotic membrane with rigorous quality control in a good manufacturing practices facility. Limbal biopsies were used to generate CALEC constructs, and final grafts were evaluated by noninvasive scanning microscopy and tested for viability and sterility. Cultivated cells maintained epithelial cell phenotype with colony-forming and proliferative capacities. Analysis of LSC biomarkers showed preservation of "stemness." After preclinical development, a phase 1 clinical trial enrolled five patients with unilateral LSC deficiency. Four of these patients received CALEC transplants, establishing preliminary feasibility. Clinical case histories are reported, with no primary safety events. On the basis of these results, a second recruitment phase of the trial was opened to provide longer term safety and efficacy data on more patients.
Subject(s)
Anti-Bacterial Agents , Limbal Stem Cell Deficiency , Humans , Feasibility Studies , Biopsy , Commerce , Epithelial CellsABSTRACT
Relapsed and refractory multiple myeloma (RRMM) is a plasma cell neoplasm defined by progressively refractory disease necessitating chronic and increasingly intensive therapy. Despite recent advances, limited treatment options exist for RRMM. This single-arm, open label phase 1 study aimed to evaluate the safety of novel B-cell maturation antigen (BCMA)-targeting chimeric antigen receptor (CAR) T construct that leverages a completely synthetic antigen-binding domain (CART-ddBCMA), which was specifically engineered to reduce immunogenicity and improve CAR cell surface stability. Thirteen patients ≥18 years with RRMM who received at least 3 prior regimens of systemic therapy were enrolled in the study. Patients received a single dose of 100 × 106 CART-ddBCMA (DL1) or 300 × 106 CART-ddBCMA (DL2) following standard lymphodepleting chemotherapy. The primary endpoints of the study were to evaluate the incidence of treatment emergent adverse events, including dose-limiting toxicities, and establish a recommended phase 2 dose. Results showed that CART-ddBCMA was well tolerated and demonstrated a favorable toxicity profile. Only 1 case of grade ≥3 cytokine release syndrome and 1 case of immune effector cell-associated neurotoxicity were reported; both were at DL2 and were manageable with standard treatment. No atypical neurological toxicities and Parkinson disease-like movement disorders were observed. The maximum tolerated dose was not reached. All infused patients responded to CART-ddBCMA, and 9/12 (75%) patients achieved complete response/stringent complete response. Responses deepened over time, and at the time of last data-cut (median follow-up 56 weeks), 8/9 (89%) evaluable patients achieved minimal residual disease negativity. In conclusion, the findings demonstrate the safety of CART-ddBCMA cells and document durable responses to CART-ddBCMA in patients with RRMM. This trial was registered at www.clinicaltrials.gov as #NCT04155749.
Subject(s)
Multiple Myeloma , Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/drug therapy , Lymphocytes , Receptors, Chimeric Antigen/therapeutic useABSTRACT
Vaccination using irradiated, adenovirus transduced autologous myeloblasts to secrete granulocyte-macrophage colony-stimulating factor (GVAX) early after allogeneic hematopoietic stem cell transplantation (HSCT) can induce potent immune responses. We conducted a randomized phase 2 trial of GVAX after HSCT for myelodysplastic syndrome with excess blasts or relapsed/refractory acute myeloid leukemia. Myeloblasts were harvested before HSCT to generate the vaccine. Randomization to GVAX vs placebo (1:1) was stratified according to disease, transplant center, and conditioning. Graft-versus-host disease (GVHD) prophylaxis included tacrolimus and methotrexate. GVAX or placebo vaccination was started between day 30 and 45 if there was engraftment and no GVHD. Vaccines were administered subcutaneously/intradermally weekly × 3, then every 2 weeks × 3. Tacrolimus taper began after vaccine completion. A total of 123 patients were enrolled, 92 proceeded to HSCT, and 57 (GVAX, n = 30; placebo, n = 27) received at least 1 vaccination. No Common Toxicity Criteria grade 3 or worse vaccine-related adverse events were reported, but injection site reactions were more common after GVAX (10 vs 1; P = .006). With a median follow-up of 39 months (range, 9-89 months), 18-month progression-free survival, overall survival, and relapse incidence were 53% vs 55% (P = .79), 63% vs 59% (P = .86), and 30% vs 37% (P = .51) for GVAX and placebo, respectively. Nonrelapse mortality at 18 months was 17% vs 7.7% (P = .18), grade II to IV acute GVHD at 12 months was 34% vs 12% (P = .13), and chronic GVHD at 3 years was 49% vs 57% for GVAX and placebo (P = .26). Reconstitution of T, B, and natural killer cells was not decreased or enhanced by GVAX. There were no differences in serum major histocompatibility chain-related protein A/B or other immune biomarkers between GVAX and placebo. GVAX does not improve survival after HSCT for myelodysplastic syndrome/acute myeloid leukemia. This trial was registered at www.clinicaltrials.gov as #NCT01773395.
Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Leukemia, Myeloid, Acute/drug therapy , VaccinationABSTRACT
BACKGROUND: Allogeneic hematopoietic stem cell transplants from unrelated donors are routinely used in the treatment of patients with hematologic malignancies. These cellular products are often collected off-site and require transport from the collection site to transplantation centers. However, the effects of transport conditions and media on stem cell graft composition during short-term storage have not been well described. STUDY DESIGN AND METHODS: Five bone marrow (BM), four filgrastim-mobilized peripheral blood stem cell (PBSC), and four nonmobilized peripheral blood mononuclear cell (PBMNC) products were collected from healthy volunteer donors and stored at 4 or 20°C for up to 72 hours in 10% PlasmaLyte A plus anticoagulants such as 10% acid citrate dextran-A (ACD-A) and/or 10 IU/mL heparin. Products were evaluated at 0, 24, 48, and 72 hours for cellular content, viability, and metabolic activities. RESULTS: BM products maintained equivalent cell viability when stored at either 4 or 20°C over 72 hours, but cell viability was better maintained for PBSC products stored at 4°C. The mean viable CD34+ cell recovery for PBSC and BM products stored over 72 hours at 4°C was higher than 75%. Significantly lower CD34+ cell and colony-forming unit recoveries were seen in PBSC products but not BM products stored at room temperature. Faster lactic acid accumulation was observed in PBMNC and PBSC products stored without ACD-A. CONCLUSIONS: Seventy-two-hour storage of BM, PBSC, and PBMNC products at refrigerated temperature maintains optimal cell viability and recovery. Anticoagulation with ACD-A is preferred over heparin to reduce lactic acid accumulation in the product media.
Subject(s)
Hematopoietic Stem Cells/cytology , Leukocytes, Mononuclear/cytology , Tissue Preservation/methods , Cell Survival , Hematopoietic Stem Cell Transplantation , Humans , Temperature , Time Factors , Transplantation, HomologousABSTRACT
NKG2D ligands are widely expressed in solid and hematologic malignancies but absent or poorly expressed on healthy tissues. We conducted a phase I dose-escalation study to evaluate the safety and feasibility of a single infusion of NKG2D-chimeric antigen receptor (CAR) T cells, without lymphodepleting conditioning in subjects with acute myeloid leukemia/myelodysplastic syndrome or relapsed/refractory multiple myeloma. Autologous T cells were transfected with a γ-retroviral vector encoding a CAR fusing human NKG2D with the CD3ζ signaling domain. Four dose levels (1 × 106-3 × 107 total viable T cells) were evaluated. Twelve subjects were infused [7 acute myeloid leukemia (AML) and 5 multiple myeloma]. NKG2D-CAR products demonstrated a median 75% vector-driven NKG2D expression on CD3+ T cells. No dose-limiting toxicities, cytokine release syndrome, or CAR T cell-related neurotoxicity was observed. No significant autoimmune reactions were noted, and none of the ≥ grade 3 adverse events were attributable to NKG2D-CAR T cells. At the single injection of low cell doses used in this trial, no objective tumor responses were observed. However, hematologic parameters transiently improved in one subject with AML at the highest dose, and cases of disease stability without further therapy or on subsequent treatments were noted. At 24 hours, the cytokine RANTES increased a median of 1.9-fold among all subjects and 5.8-fold among six AML patients. Consistent with preclinical studies, NKG2D-CAR T cell-expansion and persistence were limited. Manufactured NKG2D-CAR T cells exhibited functional activity against autologous tumor cells in vitro, but modifications to enhance CAR T-cell expansion and target density may be needed to boost clinical activity.
Subject(s)
Immunotherapy, Adoptive , Leukemia, Myeloid, Acute/therapy , Multiple Myeloma/therapy , Myelodysplastic Syndromes/therapy , Adult , Aged , Cytokines/immunology , Female , Humans , Ligands , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunologyABSTRACT
Novel therapies for sickle cell disease (SCD) based on genetically engineered autologous hematopoietic stem and progenitor cells (HSPCs) are critically dependent on a safe and effective strategy for cell procurement. We sought to assess the safety and efficacy of plerixafor when used in transfused patients with SCD for HSC mobilization. Six adult patients with SCD were recruited to receive a single dose of plerixafor, tested at lower than standard (180 µg/kg) and standard (240 µg/kg) doses, followed by CD34+ cell monitoring in peripheral blood and apheresis collection. The procedures were safe and well-tolerated. Mobilization was successful, with higher peripheral CD34+ cell counts in the standard vs the low-dose group. Among our 6 donors, we improved apheresis cell collection results by using a deep collection interface and starting apheresis within 4 hours after plerixafor administration. In the subjects who received a single standard dose of plerixafor and followed the optimized collection protocol, yields of up to 24.5 × 106 CD34+ cells/kg were achieved. Interestingly, the collected CD34+ cells were enriched in immunophenotypically defined long-term HSCs and early progenitors. Thus, we demonstrate that plerixafor can be employed safely in patients with SCD to obtain sufficient HSCs for potential use in gene therapy.
Subject(s)
Anemia, Sickle Cell/therapy , Blood Component Removal , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells/metabolism , Heterocyclic Compounds/administration & dosage , Adolescent , Adult , Benzylamines , Cyclams , Dose-Response Relationship, Drug , Genetic Therapy/methods , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cells/drug effects , Humans , Immunophenotyping , Peripheral Blood Stem Cell Transplantation/methods , Pilot Projects , Young AdultABSTRACT
Purpose: Invariant NKT cells (iNKT) are innate-like CD1d-restricted T cells with immunoregulatory activity in diseases including cancer. iNKT from advanced cancer patients can have reversible defects including IFNγ production, and iNKT IFNγ production may stratify for survival. Previous clinical trials using iNKT cell activating ligand α-galactosylceramide have shown clinical responses. Therefore, a phase I clinical trial was performed of autologous in vitro expanded iNKT cells in stage IIIB-IV melanoma.Experimental Design: Residual iNKT cells [<0.05% of patient peripheral blood mononuclear cell (PBMC)] were purified from autologous leukapheresis product using an antibody against the iNKT cell receptor linked to magnetic microbeads. iNKT cells were then expanded with CD3 mAb and IL2 in vitro to obtain up to approximately 109 cells.Results: Expanded iNKT cells produced IFNγ, but limited or undetectable IL4 or IL10. Three iNKT infusions each were completed on 9 patients, and produced only grade 1-2 toxicities. The 4th patient onward received systemic GM-CSF with their second and third infusions. Increased numbers of iNKT cells were seen in PBMCs after some infusions, particularly when GM-CSF was also given. IFNγ responses to α-galactosylceramide were increased in PBMCs from some patients after infusions, and delayed-type hypersensitivity responses to Candida increased in 5 of 8 evaluated patients. Three patients have died, three were progression-free at 53, 60, and 65 months, three received further treatment and were alive at 61, 81, and 85 months. There was no clear correlation between outcome and immune parameters.Conclusions: Autologous in vitro expanded iNKT cells are a feasible and safe therapy, producing Th1-like responses with antitumor potential. Clin Cancer Res; 23(14); 3510-9. ©2017 AACR.