ABSTRACT
BACKGROUND: Critical care of patients on extracorporeal membrane oxygenation (ECMO) with acute brain injury (ABI) is notable for a lack of high-quality clinical evidence. Here, we offer guidelines for neurological care (neurological monitoring and management) of adults during and after ECMO support. METHODS: These guidelines are based on clinical practice consensus recommendations and scientific statements. We convened an international multidisciplinary consensus panel including 30 clinician-scientists with expertise in ECMO from all chapters of the Extracorporeal Life Support Organization (ELSO). We used a modified Delphi process with three rounds of voting and asked panelists to assess the recommendation levels. RESULTS: We identified five key clinical areas needing guidance: (1) neurological monitoring, (2) post-cannulation early physiological targets and ABI, (3) neurological therapy including medical and surgical intervention, (4) neurological prognostication, and (5) neurological follow-up and outcomes. The consensus produced 30 statements and recommendations regarding key clinical areas. We identified several knowledge gaps to shape future research efforts. CONCLUSIONS: The impact of ABI on morbidity and mortality in ECMO patients is significant. Particularly, early detection and timely intervention are crucial for improving outcomes. These consensus recommendations and scientific statements serve to guide the neurological monitoring and prevention of ABI, and management strategy of ECMO-associated ABI.
Subject(s)
Consensus , Extracorporeal Membrane Oxygenation , Humans , Extracorporeal Membrane Oxygenation/methods , Extracorporeal Membrane Oxygenation/standards , Adult , Delphi Technique , Monitoring, Physiologic/methods , Monitoring, Physiologic/standards , Brain Injuries/therapy , Brain Injuries/physiopathologyABSTRACT
OBJECTIVES: To derive systematic-review informed, modified Delphi consensus regarding the medications used for anticoagulation for pediatric extracorporeal membrane oxygenation (ECMO) for the Pediatric ECMO Anticoagulation CollaborativE (PEACE). DATA SOURCES: A structured literature search was performed using PubMed, EMBASE, and Cochrane Library (CENTRAL) databases from January 1988 to May 2021. STUDY SELECTION: Included studies assessed anticoagulation used in pediatric ECMO. DATA EXTRACTION: Two authors reviewed all citations independently, with a third reviewer adjudicating any conflicts. Eighteen references were used for data extraction as well as for creation of recommendations. Evidence tables were constructed using a standardized data extraction form. DATA SYNTHESIS: Risk of bias was assessed using the Quality in Prognosis Studies tool. The evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation system. Forty-eight experts met over 2 years to develop evidence-informed recommendations and, when evidence was lacking, expert-based consensus statements, or good practice statements for anticoagulation during pediatric ECMO. A web-based modified Delphi process was used to build consensus via the Research and Development/University of California Appropriateness Method. Consensus was based on a modified Delphi process with agreement defined as greater than 80%. Two recommendations, two consensus statements, and one good practice statement were developed, and, in all, agreement greater than 80% was reached. CONCLUSIONS: There is insufficient evidence to formulate optimal anticoagulation therapy during pediatric ECMO. Additional high-quality research is needed to inform evidence-based practice for anticoagulation during pediatric ECMO.
Subject(s)
Anticoagulants , Delphi Technique , Extracorporeal Membrane Oxygenation , Extracorporeal Membrane Oxygenation/methods , Humans , Anticoagulants/administration & dosage , Anticoagulants/therapeutic use , Child , ConsensusABSTRACT
OBJECTIVES: To identify and prioritize research questions for anticoagulation and hemostasis management of neonates and children supported with extracorporeal membrane oxygenation (ECMO) from the Pediatric ECMO Anticoagulation CollaborativE (PEACE) consensus. DATA SOURCES: Systematic review was performed using PubMed, EMBASE, and Cochrane Library (CENTRAL) databases from January 1988 to May 2021, followed by serial consensus conferences of international, interprofessional experts in the management of ECMO for critically ill neonates and children. STUDY SELECTION: The management of ECMO anticoagulation for critically ill neonates and children. DATA EXTRACTION: Within each of the eight subgroups, two authors reviewed all citations independently, with a third independent reviewer resolving any conflicts. DATA SYNTHESIS: Following the systematic review of MEDLINE, EMBASE, and Cochrane Library databases from January 1988 to May 2021, and the consensus process for clinical recommendations and consensus statements, PEACE panel experts constructed research priorities using the Child Health and Nutrition Research Initiative methodology. Twenty research topics were prioritized, falling within five domains (definitions and outcomes, therapeutics, anticoagulant monitoring, protocolized management, and impact of the ECMO circuit and its components on hemostasis). CONCLUSIONS: We present the research priorities identified by the PEACE expert panel after a systematic review of existing evidence informing clinical care of neonates and children managed with ECMO. More research is required within the five identified domains to ultimately inform and improve the care of this vulnerable population.
Subject(s)
Anticoagulants , Extracorporeal Membrane Oxygenation , Extracorporeal Membrane Oxygenation/methods , Humans , Anticoagulants/therapeutic use , Anticoagulants/administration & dosage , Child , Infant, Newborn , Critical Illness/therapy , Biomedical Research/methods , Infant , Child, PreschoolABSTRACT
OBJECTIVES: To present recommendations and consensus statements with supporting literature for the clinical management of neonates and children supported with extracorporeal membrane oxygenation (ECMO) from the Pediatric ECMO Anticoagulation CollaborativE (PEACE) consensus conference. DATA SOURCES: Systematic review was performed using PubMed, Embase, and Cochrane Library (CENTRAL) databases from January 1988 to May 2021, followed by serial meetings of international, interprofessional experts in the management ECMO for critically ill children. STUDY SELECTION: The management of ECMO anticoagulation for critically ill children. DATA EXTRACTION: Within each of eight subgroup, two authors reviewed all citations independently, with a third independent reviewer resolving any conflicts. DATA SYNTHESIS: A systematic review was conducted using MEDLINE, Embase, and Cochrane Library databases, from January 1988 to May 2021. Each panel developed evidence-based and, when evidence was insufficient, expert-based statements for the clinical management of anticoagulation for children supported with ECMO. These statements were reviewed and ratified by 48 PEACE experts. Consensus was obtained using the Research and Development/UCLA Appropriateness Method. Results were summarized using the Grading of Recommendations Assessment, Development, and Evaluation method. We developed 23 recommendations, 52 expert consensus statements, and 16 good practice statements covering the management of ECMO anticoagulation in three broad categories: general care and monitoring; perioperative care; and nonprocedural bleeding or thrombosis. Gaps in knowledge and research priorities were identified, along with three research focused good practice statements. CONCLUSIONS: The 91 statements focused on clinical care will form the basis for standardization and future clinical trials.
Subject(s)
Anticoagulants , Critical Illness , Extracorporeal Membrane Oxygenation , Extracorporeal Membrane Oxygenation/methods , Humans , Anticoagulants/therapeutic use , Anticoagulants/administration & dosage , Child , Critical Illness/therapy , Infant, Newborn , Infant , Child, PreschoolABSTRACT
INTRODUCTION: This study aims to describe laboratory and clinical factors associated with thrombotic events during prolonged pediatric extracorporeal membrane oxygenation. METHODS: A secondary analysis of a multi-center prospective study performed between 2012 and 2014. Patients under the age of 19 years that received extracorporeal membrane oxygenation for at least 4 days of therapy were included (n = 385). Univariable analysis and binomial regression were performed to evaluate predictive factors of single and multiple thrombotic events. A posteriori scoring tool was created to categorize thrombotic event severity. RESULTS: Over 39% of children receiving prolonged ECMO experienced a thrombotic event (TE). Binomial regression demonstrated an association between higher transfused platelet volume (mL/kg) (OR 1.04, CI: 95% 1.01-1.06, p = 0.003), Anti-Xa (OR 5.38, CI: 95% 1.22-23.8, p = 0.026) and aPTT (OR 1.01, CI: 95% 1.00-1.02, p = 0.032) the day prior to TE. Patients experiencing multiple TEs were associated with higher platelet transfusion volume (mL/kg) (OR 1.08, CI: 95% 1.05-1.12, p =< 0.001), antithrombin III (OR 1.03, CI: 95% 1.01-1.04, p = 0.001) and aPTT (OR 1.02, CI: 95% 1.01-1.03, p = 0.009). Patients experiencing multiple thrombotic events had a higher risk of 28-day mortality based on a cumulative clot severity score >4 (OR 2.37 (CI: 95% 1.32-4.24). CONCLUSIONS: Current lab tests show limited sensitivity to predict these events the day prior in a vulnerable patient group, leading to potential ECMO circuit failures. Patients with multiple thrombotic events during ECMO therapy face increased mortality risks, highlighting the need for dynamic reporting tools like clot severity scores and detailed documentation of interventions to enhance understanding and improve outcomes.
ABSTRACT
Managing intracranial hemorrhage in patients supported by extracorporeal oxygenation (ECMO) presents significant clinical challenges. We report a case of a postpartum patient with severe acute respiratory distress syndrome (ARDS) necessitating venovenous ECMO support, complicated by multicompartmental intracranial hemorrhage resulting in brain herniation and necessitating emergent medical and surgical management of refractory intracranial hypertension. Care was guided by multimodal neuromonitoring, including intracranial pressure monitoring and electroencephalography. Despite these challenges, the patient achieved excellent neurological recovery. This case underscores the intricacies of managing neurological complications during ECMO and highlights the potential benefits of comprehensive neuromonitoring strategies.
ABSTRACT
OBJECTIVE: The outcomes of COVID-19 patients on venovenous extracorporeal membrane oxygenation (VV-ECMO) varied. We aim to investigate the variability concerning location and timeframe. We conducted a retrospective analysis of data from 351 institutions in 53 countries. The primary outcome was survival to hospital discharge or death up to 90 days from ECMO start. The associations between calendar time (month and year) of ECMO initiation and the primary outcome were examined by Cox regression modeling. Multivariable survival analyses were adjusted for the time of ECMO start, age, body mass index, APACHE II, SOFA, and the duration of mechanical ventilation before ECMO. RESULTS: 1060 adult COVID-19 patients enrolled in the COVID-19 Critical Care Consortium (COVID Critical) international registry and required VV-ECMO support. The study period is from January 2020 to December 2021. The median age was 51 years old, and 70% were male patients. Most patients were from Europe (39.3%) and North America (37.4%). The in-hospital mortality of the entire cohort was 47.12%. In North America and Europe, there was an increased probability of death from May 2020 through February 2021. Latin America showed a steady rate of survival until late in the study. South Asia, the Middle East, and Africa showed an increased chance of mortality around May 2020. In the Asian-Pacific region, after February 2021, there was an increased probability of death. The time of ECMO initiation and advanced patient age were associated with increased mortality. CONCLUSION: Variability in the outcomes of COVID-19 patients on VV-ECMO existed within different regions. This variability reflects the differences in resources, policies, patient selection, management, and possibly COVID-19 virus subtypes. Our findings might help guide global response in the future by early adoption of patient selection protocols, worldwide policies, and delivery of resources.
ABSTRACT
OBJECTIVES: To determine the prevalence and outcomes associated with hemorrhage, disseminated intravascular coagulopathy, and thrombosis (HECTOR) complications in ICU patients with COVID-19. DESIGN: Prospective, observational study. SETTING: Two hundred twenty-nine ICUs across 32 countries. PATIENTS: Adult patients (≥ 16 yr) admitted to participating ICUs for severe COVID-19 from January 1, 2020, to December 31, 2021. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: HECTOR complications occurred in 1,732 of 11,969 study eligible patients (14%). Acute thrombosis occurred in 1,249 patients (10%), including 712 (57%) with pulmonary embolism, 413 (33%) with myocardial ischemia, 93 (7.4%) with deep vein thrombosis, and 49 (3.9%) with ischemic strokes. Hemorrhagic complications were reported in 579 patients (4.8%), including 276 (48%) with gastrointestinal hemorrhage, 83 (14%) with hemorrhagic stroke, 77 (13%) with pulmonary hemorrhage, and 68 (12%) with hemorrhage associated with extracorporeal membrane oxygenation (ECMO) cannula site. Disseminated intravascular coagulation occurred in 11 patients (0.09%). Univariate analysis showed that diabetes, cardiac and kidney diseases, and ECMO use were risk factors for HECTOR. Among survivors, ICU stay was longer (median days 19 vs 12; p < 0.001) for patients with versus without HECTOR, but the hazard of ICU mortality was similar (hazard ratio [HR] 1.01; 95% CI 0.92-1.12; p = 0.784) overall, although this hazard was identified when non-ECMO patients were considered (HR 1.13; 95% CI 1.02-1.25; p = 0.015). Hemorrhagic complications were associated with an increased hazard of ICU mortality compared to patients without HECTOR complications (HR 1.26; 95% CI 1.09-1.45; p = 0.002), whereas thrombosis complications were associated with reduced hazard (HR 0.88; 95% CI 0.79-0.99, p = 0.03). CONCLUSIONS: HECTOR events are frequent complications of severe COVID-19 in ICU patients. Patients receiving ECMO are at particular risk of hemorrhagic complications. Hemorrhagic, but not thrombotic complications, are associated with increased ICU mortality.
Subject(s)
COVID-19 , Thrombosis , Adult , Humans , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Prospective Studies , Critical Illness , Thrombosis/epidemiology , Thrombosis/etiology , Critical Care , Hemorrhage/epidemiology , Hemorrhage/etiology , Retrospective StudiesABSTRACT
OBJECTIVES: To systematically review and assimilate literature on children receiving extracorporeal membrane oxygenation (ECMO) support in pediatric acute respiratory distress syndrome (PARDS) with the goal of developing an update to the Pediatric Acute Lung Injury Consensus Conference recommendations and statements about clinical practice and research. DATA SOURCES: Electronic searches of MEDLINE (Ovid), Embase (Elsevier), and CINAHL Complete (EBSCOhost). STUDY SELECTION: The search used a medical subject heading terms and text words to capture studies of ECMO in PARDS or acute respiratory failure. Studies using animal models and case reports were excluded from our review. DATA EXTRACTION: Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS: The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize evidence and develop recommendations. There were 18 studies identified for full-text extraction. When pediatric data was lacking, adult and neonatal data from randomized clinical trials and observational studies were considered. Six clinical recommendations were generated related to ECMO indications, initiation, and management in PARDS. There were three good practice statements generated related to ECMO indications, initiation, and follow-up in PARDS. Two policy statements were generated involving the impact of ECMO team organization and training in PARDS. Last, there was one research statement. CONCLUSIONS: Based on a systematic literature review, we propose clinical management, good practice and policy statements within the domains of ECMO indications, initiation, team organization, team training, management, and follow-up as they relate to PARDS.
Subject(s)
Acute Lung Injury , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/therapy , Acute Lung Injury/therapyABSTRACT
OBJECTIVES: We sought to update our 2015 work in the Second Pediatric Acute Lung Injury Consensus Conference (PALICC-2) guidelines for the diagnosis and management of pediatric acute respiratory distress syndrome (PARDS), considering new evidence and topic areas that were not previously addressed. DESIGN: International consensus conference series involving 52 multidisciplinary international content experts in PARDS and four methodology experts from 15 countries, using consensus conference methodology, and implementation science. SETTING: Not applicable. PATIENTS: Patients with or at risk for PARDS. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Eleven subgroups conducted systematic or scoping reviews addressing 11 topic areas: 1) definition, incidence, and epidemiology; 2) pathobiology, severity, and risk stratification; 3) ventilatory support; 4) pulmonary-specific ancillary treatment; 5) nonpulmonary treatment; 6) monitoring; 7) noninvasive respiratory support; 8) extracorporeal support; 9) morbidity and long-term outcomes; 10) clinical informatics and data science; and 11) resource-limited settings. The search included MEDLINE, EMBASE, and CINAHL Complete (EBSCOhost) and was updated in March 2022. Grading of Recommendations, Assessment, Development, and Evaluation methodology was used to summarize evidence and develop the recommendations, which were discussed and voted on by all PALICC-2 experts. There were 146 recommendations and statements, including: 34 recommendations for clinical practice; 112 consensus-based statements with 18 on PARDS definition, 55 on good practice, seven on policy, and 32 on research. All recommendations and statements had agreement greater than 80%. CONCLUSIONS: PALICC-2 recommendations and consensus-based statements should facilitate the implementation and adherence to the best clinical practice in patients with PARDS. These results will also inform the development of future programs of research that are crucially needed to provide stronger evidence to guide the pediatric critical care teams managing these patients.
Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Child , Humans , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Respiration, Artificial/methods , ConsensusABSTRACT
BACKGROUND: Veno-venous extracorporeal membrane oxygenation (V-V ECMO) is a lifesaving support modality for severe respiratory failure, but its resource-intensive nature led to significant controversy surrounding its use during the COVID-19 pandemic. We report the performance of several ECMO mortality prediction and severity of illness scores at discriminating survival in a large COVID-19 V-V ECMO cohort. METHODS: We validated ECMOnet, PRESET (PREdiction of Survival on ECMO Therapy-Score), Roch, SOFA (Sequential Organ Failure Assessment), APACHE II (acute physiology and chronic health evaluation), 4C (Coronavirus Clinical Characterisation Consortium), and CURB-65 (Confusion, Urea nitrogen, Respiratory Rate, Blood Pressure, age >65 years) scores on the ISARIC (International Severe Acute Respiratory and emerging Infection Consortium) database. We report discrimination via Area Under the Receiver Operative Curve (AUROC) and Area under the Precision Recall Curve (AURPC) and calibration via Brier score. RESULTS: We included 1147 patients and scores were calculated on patients with sufficient variables. ECMO mortality scores had AUROC (0.58-0.62), AUPRC (0.62-0.74), and Brier score (0.286-0.303). Roch score had the highest accuracy (AUROC 0.62), precision (AUPRC 0.74) yet worst calibration (Brier score of 0.3) despite being calculated on the fewest patients (144). Severity of illness scores had AUROC (0.52-0.57), AURPC (0.59-0.64), and Brier Score (0.265-0.471). APACHE II had the highest accuracy (AUROC 0.58), precision (AUPRC 0.64), and best calibration (Brier score 0.26). CONCLUSION: Within a large international multicenter COVID-19 cohort, the evaluated ECMO mortality prediction and severity of illness scores demonstrated inconsistent discrimination and calibration highlighting the need for better clinically applicable decision support tools.
Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Humans , Aged , Pandemics , Retrospective Studies , COVID-19/diagnosis , COVID-19/therapy , APACHEABSTRACT
OBJECTIVE: Bleeding and thrombosis are common complications during Extracorporeal Membrane Oxygenation (ECMO) support for COVID-19 patients. We sought to examine the relationship between inflammatory status, coagulation effects, and observed bleeding and thrombosis in patients receiving venovenous (VV) ECMO for COVID-19 respiratory failure. STUDY DESIGN: Cross-sectional cohort study. SETTINGS: Quaternary care institution. PATIENTS: The study period from April 1, 2020, to January 1, 2021, we included all patients with confirmed COVID-19 who received VV ECMO support. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: Thirty-two patients were supported with VV ECMO during the study period, and 17 patients (53%) survived to hospital discharge. The ECMO nonsurvivors mean lactate dehydrogenase (LDH) levels were markedly elevated in comparison to survivors (1046 u/L [IQR = 509, 1305] vs 489 u/L [385 658], p = 0.003). Platelet/fibrinogen dysfunction, as reflected by the low Maximum Amplitude (MA) on viscoelastic testing, was worse in nonsurvivors (65.25 mm [60.68, 67.67] vs 74.80 mm [73.10, 78.40], p = 0.01). Time-group interaction for the first seven days of ECMO support, showed significantly lower platelet count in the nonsurvivors (140 k/ul [103, 170] vs 189.5 k/ul [ 146, 315], p < 0.001) and higher D-dimer in (21 µg/mL [13, 21] vs 14 µg/mL [3, 21], p < 0.001) in comparison to the survivors. Finally, we found profound statistically significant correlations between the clinical markers of inflammation and markers of coagulation in the nonsurvivors group. The ECMO nonsurvivors experienced higher rate of bleeding (73.3% vs 35.3%, p = 0.03), digital ischemia (46.7% vs 11.8%, p = 0.02), acute renal failure (60% vs 11.8%, p = 0.01) and bloodstream infection (60% vs 23.5%, p = 0.03). CONCLUSION: The correlation between inflammation and coagulation in the nonsurvivors supported with VV ECMO could indicate dysregulated inflammatory response and worse clinical outcomes.
Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Thrombosis , Humans , COVID-19/complications , COVID-19/therapy , Extracorporeal Membrane Oxygenation/adverse effects , Cross-Sectional Studies , Retrospective Studies , Inflammation/complications , Hemorrhage/etiology , Thrombosis/etiologyABSTRACT
To determine associations between anticoagulation practices and bleeding and thrombosis during pediatric extracorporeal membrane oxygenation (ECMO), we performed a secondary analysis of prospectively collected data which included 481 children (<19 years), between January 2012 and September 2014. The primary outcome was bleeding or thrombotic events. Bleeding events included a blood product transfusion >80 ml/kg on any day, pulmonary hemorrhage, or intracranial bleeding, Thrombotic events included pulmonary emboli, intracranial clot, limb ischemia, cardiac clot, and arterial cannula or entire circuit change. Bleeding occurred in 42% of patients. Five percent of subjects thrombosed, of which 89% also bled. Daily bleeding odds were independently associated with day prior activated clotting time (ACT) (OR 1.03, 95% CI= 1.00, 1.05, p=0.047) and fibrinogen levels (OR 0.90, 95% CI 0.84, 0.96, p <0.001). Thrombosis odds decreased with increased day prior heparin dose (OR 0.88, 95% CI 0.81, 0.97, p=0.006). Lower ACT values and increased fibrinogen levels may be considered to decrease the odds of bleeding. Use of this single measure, however, may not be sufficient alone to guide optimal anticoagulation practice during ECMO.
Subject(s)
Extracorporeal Membrane Oxygenation , Thrombosis , Humans , Child , Extracorporeal Membrane Oxygenation/adverse effects , Anticoagulants/adverse effects , Hemorrhage/etiology , Hemorrhage/therapy , Thrombosis/etiology , Heparin/adverse effects , Fibrinogen , Retrospective StudiesABSTRACT
OBJECTIVES: The study investigated the impact of prone positioning during venovenous extracorporeal membrane oxygenation support for coronavirus disease 2019 acute respiratory failure on the patient outcome. DESIGN: An observational study of venovenous extracorporeal membrane oxygenation patients. We used a multistate survival model to compare the outcomes of patients treated with or without prone positioning during extracorporeal membrane oxygenation, which incorporates the dynamic nature of prone positioning and adjusts for potential confounders. SETTING: Seventy-two international institutions participating in the Coronavirus Disease 2019 Critical Care Consortium international registry. PATIENTS: Coronavirus disease 2019 patients who were supported by venovenous extracorporeal membrane oxygenation during the study period. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: There were 232 coronavirus disease 2019 patients at 72 participating institutions who were supported with venovenous extracorporeal membrane oxygenation during the study period from February 16, 2020, to October 31, 2020. Proning was used in 176 patients (76%) before initiation of extracorporeal membrane oxygenation and in 67 patients (29%) during extracorporeal membrane oxygenation. Survival to hospital discharge was 33% in the extracorporeal membrane oxygenation prone group versus 22% in the extracorporeal membrane oxygenation supine group. Prone positioning during extracorporeal membrane oxygenation support was associated with reduced mortality (hazard ratio, 0.31; 95% CI, 0.14-0.68). CONCLUSIONS: Our study highlights that prone positioning during venovenous extracorporeal membrane oxygenation support for refractory coronavirus disease 2019-related acute respiratory distress syndrome is associated with reduced mortality. Given the observational nature of the study, a randomized controlled trial of prone positioning on venovenous extracorporeal membrane oxygenation is needed to confirm these findings.
Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation , Patient Positioning/methods , Prone Position , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Adult , COVID-19/complications , Female , Hospital Mortality , Humans , Male , Middle Aged , Patient Discharge , Probability , Respiratory Distress Syndrome/etiologyABSTRACT
BACKGROUND: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. METHODS: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. RESULTS: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0-25) and 25 (IQR 7-26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0-87) and 87 (IQR 0-88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). CONCLUSIONS: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting.
Subject(s)
COVID-19 Drug Treatment , Neuromuscular Blocking Agents , Respiratory Distress Syndrome , Aged , Female , Humans , Intensive Care Units , Male , Middle Aged , Neuromuscular Blocking Agents/therapeutic use , Propensity Score , Respiration, Artificial , Respiratory Distress Syndrome/drug therapyABSTRACT
Monitoring for the anticoagulant effect of unfractionated (UFH) at the point of care using activated clotting time in real time is vital where risk of thrombosis is high. Although monitoring UFH effect is a routine and important task, changing from one ACT instrument type or technology to another must be preceded by a clinical and statistical evaluation to determine the suitability and repeatability and establish normal and treatable ranges of this newer instrument. In this multi-center prospective evaluation we tested 1236 paired ACT+ samples, and 463 paired ACT-LR samples (1699 total) from enrolled study subjects. Clinical settings included CVOR cardiopulmonary bypass, at the beside in extracorporeal life support (ELS), the Cardiac Catheterization Lab (CCL) during diagnostic studies and percutaneous coronary interventions (PCI), interventional radiology procedures and EP interventions. This study found more consistent clinical performance from the GEM Hemochron 100 as compared to the current clinical model, the Hemochron Signature Elite. The bias of GEM Hemochron 100 for ACT+ and ACT-LR was greatest in the setting of the CVOR where ACT levels were high. ACT-LR measurements by the GEM Hemochron 100 were comparable to the SE when performed in settings of CCL, ECM, EP and ICU. Results obtained for both ACT-LR and ACT+ in all clinical settings in this study using the GEM Hemochron 100 are as accurate and more repeatable as those with the current clinically available Signature Elite.
Subject(s)
Heparin , Percutaneous Coronary Intervention , Humans , Anticoagulants/therapeutic use , Inpatients , Blood Coagulation Tests/methodsABSTRACT
OBJECTIVES: The last decade has seen improved outcomes for children requiring extracorporeal life support as well as for children undergoing hematopoietic cell transplantation. Thus, given the historically poor survival of hematopoietic cell transplantation patients using extracorporeal life support, the Pediatric Acute Lung Injury and Sepsis Investigators' hematopoietic cell transplantation and cancer immunotherapy subgroup aimed to characterize the utility of extracorporeal life support in facilitating recovery from critical cardiorespiratory illnesses in pediatric hematopoietic cell transplantation patients. DATA SOURCES: All available published data were identified using a set of PubMed search terms for pediatric extracorporeal life support and hematopoietic cell transplantation. STUDY SELECTION: All articles that provided original reports of pediatric hematopoietic cell transplantation patients who underwent extracorporeal life support were included. Sixty-four manuscripts met search criteria. Twenty-four were included as primary reports of pediatric hematopoietic cell transplantation patients who underwent extracorporeal life support (11 were single case reports, four single institution case series, two multi-institution case series, and seven registry reports from Extracorporeal Life Support Organization, Pediatric Heath Information System, and Virtual Pediatric Systems). DATA EXTRACTION: All 24 articles were reviewed by first and last authors and a spread sheet was constructed including sample size, potential biases, and conclusions. DATA SYNTHESIS: Discussions regarding incorporation of available evidence into our clinical practice were held at biannual meetings, as well as through email and virtual meetings. An expert consensus was determined through these discussions and confirmed through a modified Delphi process. CONCLUSIONS: Extracorporeal life support in hematopoietic cell transplantation patients is being used with increasing frequency and potentially improving survival. The Pediatric Acute Lung Injury and Sepsis Investigators hematopoietic cell transplantation-cancer immunotherapy subgroup has developed a framework to guide physicians in decision-making surrounding extracorporeal life support candidacy in pediatric hematopoietic cell transplantation patients. In addition to standard extracorporeal life support considerations, candidacy in the hematopoietic cell transplantation population should consider the following six factors in order of consensus agreement: 1) patient comorbidities; 2) underlying disease necessitating hematopoietic cell transplantation; 3) hematopoietic cell transplantation toxicities, 4) family and patient desires for goals of care; 5) hematopoietic cell transplantation preparatory regimen; and 6) graft characteristics. Although risk assessment may be individualized, data are currently insufficient to clearly delineate ideal candidacy. Therefore, we urge the onco-critical care community to collaborate and capture data to provide better evidence to guide physicians' decision-making in the future.
Subject(s)
Acute Lung Injury , Extracorporeal Membrane Oxygenation , Hematopoietic Stem Cell Transplantation , Neoplasms , Sepsis , Child , Critical Illness , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunotherapy , Sepsis/etiology , Sepsis/therapyABSTRACT
The history of cardiopulmonary resuscitation and the Society of Critical Care Medicine have much in common, as many of the founders of the Society of Critical Care Medicine focused on understanding and improving outcomes from cardiac arrest. We review the history, the current, and future state of cardiopulmonary resuscitation.
Subject(s)
Cardiopulmonary Resuscitation/history , Cardiopulmonary Resuscitation/methods , Cardiopulmonary Resuscitation/trends , Critical Care/methods , Critical Care/organization & administration , History, 20th Century , HumansABSTRACT
BACKGROUND: Heterogeneous respiratory system static compliance (CRS) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level. METHODS: We designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe CRS-calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)]-and its association with ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide. RESULTS: We studied 745 patients from 22 countries, who required admission to the ICU and MV from January 14 to December 31, 2020, and presented at least one value of CRS within the first seven days of MV. Median (IQR) age was 62 (52-71), patients were predominantly males (68%) and from Europe/North and South America (88%). CRS, within 48 h from endotracheal intubation, was available in 649 patients and was neither associated with the duration from onset of symptoms to commencement of MV (p = 0.417) nor with PaO2/FiO2 (p = 0.100). Females presented lower CRS than males (95% CI of CRS difference between females-males: - 11.8 to - 7.4 mL/cmH2O p < 0.001), and although females presented higher body mass index (BMI), association of BMI with CRS was marginal (p = 0.139). Ventilatory management varied across CRS range, resulting in a significant association between CRS and driving pressure (estimated decrease - 0.31 cmH2O/L per mL/cmH20 of CRS, 95% CI - 0.48 to - 0.14, p < 0.001). Overall, 28-day ICU mortality, accounting for the competing risk of being discharged within the period, was 35.6% (SE 1.7). Cox proportional hazard analysis demonstrated that CRS (+ 10 mL/cm H2O) was only associated with being discharge from the ICU within 28 days (HR 1.14, 95% CI 1.02-1.28, p = 0.018). CONCLUSIONS: This multicentre report provides a comprehensive account of CRS in COVID-19 patients on MV. CRS measured within 48 h from commencement of MV has marginal predictive value for 28-day mortality, but was associated with being discharged from ICU within the same period. Trial documentation: Available at https://www.covid-critical.com/study . TRIAL REGISTRATION: ACTRN12620000421932.
Subject(s)
COVID-19/complications , COVID-19/therapy , Lung Compliance/physiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Adult , Cohort Studies , Critical Care/methods , Europe , Female , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies , Severity of Illness IndexABSTRACT
BACKGROUND: The initial research requirements in pandemics are predictable. But how is it possible to study a disease that is so quickly spreading and to rapidly use that research to inform control and treatment? MAIN BODY: In our view, a dilemma with such wide-reaching impact mandates multi-disciplinary collaborations on a global scale. International research collaboration is the only means to rapidly address these fundamental questions and potentially change the paradigm of data sharing for the benefit of patients throughout the world. International research collaboration presents significant benefits but also barriers that need to be surmounted, especially in low- and middle-income countries. CONCLUSION: Facilitating international cooperation, by building capacity in established collaborative platforms and in low- and middle-income countries, is imperative to efficiently answering the priority clinical research questions that can change the trajectory of a pandemic.