Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Biochem Soc Trans ; 52(3): 1085-1098, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38716888

ABSTRACT

In vivo, muscle and neuronal cells are post-mitotic, and their function is predominantly regulated by proteostasis, a multilayer molecular process that maintains a delicate balance of protein homeostasis. The ubiquitin-proteasome system (UPS) is a key regulator of proteostasis. A dysfunctional UPS is a hallmark of muscle ageing and is often impacted in neuromuscular disorders (NMDs). Malfunction of the UPS often results in aberrant protein accumulation which can lead to protein aggregation and/or mis-localization affecting its function. Deubiquitinating enzymes (DUBs) are key players in the UPS, controlling protein turnover and maintaining the free ubiquitin pool. Several mutations in DUB encoding genes are linked to human NMDs, such as ATXN3, OTUD7A, UCHL1 and USP14, whilst other NMDs are associated with dysregulation of DUB expression. USP5, USP9X and USP14 are implicated in synaptic transmission and remodeling at the neuromuscular junction. Mice lacking USP19 show increased maintenance of lean muscle mass. In this review, we highlight the involvement of DUBs in muscle physiology and NMDs, particularly in processes affecting muscle regeneration, degeneration and inflammation following muscle injury. DUBs have recently garnered much respect as promising drug targets, and their roles in muscle maturation, regeneration and degeneration may provide the framework for novel therapeutics to treat muscular disorders including NMDs, sarcopenia and cachexia.


Subject(s)
Deubiquitinating Enzymes , Humans , Animals , Deubiquitinating Enzymes/metabolism , Muscle, Skeletal/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/genetics , Neuromuscular Diseases/physiopathology , Neuromuscular Diseases/enzymology , Muscular Diseases/metabolism , Muscular Diseases/genetics , Mice , Proteostasis
2.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38453365

ABSTRACT

KRAS is a proto-oncogene encoding a small GTPase. Mutations contribute to ∼30% of human solid tumours, including lung adenocarcinoma, pancreatic, and colorectal carcinomas. Most KRAS activating mutations interfere with GTP hydrolysis, essential for its role as a molecular switch, leading to alterations in their molecular environment and oncogenic signalling. However, the precise signalling cascades these mutations affect are poorly understood. Here, APEX2 proximity labelling was used to profile the molecular environment of WT, G12D, G13D, and Q61H-activating KRAS mutants under starvation and stimulation conditions. Through quantitative proteomics, we demonstrate the presence of known KRAS interactors, including ARAF and LZTR1, which are differentially captured by WT and KRAS mutants. Notably, the KRAS mutations G12D, G13D, and Q61H abrogate their association with LZTR1, thereby affecting turnover. Elucidating the implications of LZTR1-mediated regulation of KRAS protein levels in cancer may offer insights into therapeutic strategies targeting KRAS-driven malignancies.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Ubiquitin-Protein Ligases , Humans , Cullin Proteins/genetics , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/genetics , Transcription Factors
3.
Cell Rep ; 43(5): 114152, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38669140

ABSTRACT

Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1ß (IL-1ß) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1ß cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1ß production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.


Subject(s)
Inflammasomes , Interleukin-1beta , Macrophages , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Proteomics , Ubiquitin Thiolesterase , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Macrophages/metabolism , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Proteomics/methods , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL