Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur J Immunol ; 47(12): 2113-2123, 2017 12.
Article in English | MEDLINE | ID: mdl-28762530

ABSTRACT

We and others have demonstrated that adipose tissue is a reservoir for HIV. Evaluation of the mechanisms responsible for viral persistence may lead to ways of reducing these reservoirs. Here, we evaluated the immune characteristics of adipose tissue in HIV-infected patients receiving antiretroviral therapy (ART) and in non-HIV-infected patients. We notably sought to determine whether adipose tissue's intrinsic properties and/or HIV induced alteration of the tissue environment may favour viral persistence. ART-controlled HIV infection was associated with a difference in the CD4/CD8 T-cell ratio and an elevated proportion of Treg cells in subcutaneous adipose tissue. No changes in Th1, Th2 and Th17 cell proportions or activation markers expression on T cell (Ki-67, HLA-DR) could be detected, and the percentage of CD69-expressing resident memory CD4+ T cells was not affected. Overall, our results indicate that adipose-tissue-resident CD4+ T cells are not extensively activated during HIV infection. PD-1 was expressed by a high proportion of tissue-resident memory CD4+ T cells in both HIV-infected patients and non-HIV-infected patients. Our findings suggest that adipose tissue's intrinsic immunomodulatory properties may limit immune activation and thus may strongly contribute to viral persistence.


Subject(s)
Adipose Tissue/immunology , CD4-Positive T-Lymphocytes/immunology , Cellular Microenvironment/immunology , HIV Infections/immunology , HIV-1/immunology , Programmed Cell Death 1 Receptor/immunology , Adipose Tissue/metabolism , Adipose Tissue/virology , Adult , Aged , Aged, 80 and over , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Disease Reservoirs/virology , Female , Flow Cytometry , HIV Infections/metabolism , HIV Infections/virology , HIV-1/drug effects , Host-Pathogen Interactions/immunology , Humans , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism
2.
PLoS Pathog ; 11(9): e1005153, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26402858

ABSTRACT

Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.


Subject(s)
Adipose Tissue/virology , Disease Reservoirs , HIV Infections/virology , HIV/physiology , Panniculitis/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Adipose Tissue/immunology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adult , Aged , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , Cells, Cultured , Coculture Techniques , Female , HIV/immunology , HIV/isolation & purification , HIV Infections/immunology , HIV Infections/metabolism , HIV Infections/pathology , Host-Pathogen Interactions , Humans , Immunity, Innate , Macaca fascicularis , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Male , Middle Aged , Panniculitis/immunology , Panniculitis/metabolism , Panniculitis/pathology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/isolation & purification , Stromal Cells/immunology , Stromal Cells/metabolism , Stromal Cells/pathology , Stromal Cells/virology
3.
Front Microbiol ; 10: 2837, 2019.
Article in English | MEDLINE | ID: mdl-31921023

ABSTRACT

Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.

4.
Front Immunol ; 10: 117, 2019.
Article in English | MEDLINE | ID: mdl-30804937

ABSTRACT

Although the metabolic properties of white adipose tissue have been extensively characterized, the tissue's immune properties are now attracting renewed interest. Early experiments in a mouse model suggested that white adipose tissue contains a high density of regulatory T cells (Tregs), and so it was assumed that all adipose tissue has an immunosuppressive profile-even though the investigation was limited to visceral body fat in relatively old male mice. This observation was also corroborated by high frequencies of other cell subsets with immunoregulatory properties, such as anti-inflammatory M2 macrophages, and regulatory B cells. Many studies have since evidenced the persistence of pathogens (trypanosomes, Mycobacterium tuberculosis, HIV, etc.) in adipose tissue. However, a recent report identified adipose tissue as a reservoir of memory T cells capable of protecting animals upon rechallenge. The immune potential of lean adipose tissue thus remains to be further investigated. Here, we compared the relative proportions of immune cells (and Tregs in particular) in lean adipose tissue collected from humans, a non-human primate (the cynomolgus macaque), and three mouse models. We demonstrated that the proportion of Foxp3+ Tregs in visceral adipose tissue was low in all models other than the C57Bl/6 mouse. These low values were not linked to correspondingly low proportions of effector cells because T lymphocytes (a main target of Treg suppression) were more frequent in cynomolgus macaques than in C57Bl/6 mice and (to a lesser extent) humans. In contrast, the proportions of macrophages and B cells were lower in cynomolgus macaques than in C57Bl/6 mice. We also observed a higher proportion of CD34+CD45- cells (which predominantly correspond to mesenchymal stem cells) in C57Bl/6 mouse and cynomolgus macaques than in humans and both for subcutaneous and visceral adipose tissues. Lastly, a microscopy analysis confirmed predominant proportion of adipocytes within adipose tissue, and highlighted a marked difference in adipocyte size among the three species studied. In conclusion, our study of lean, middle-aged, male individuals showed that the immune compartment of adipose tissue differed markedly in humans vs. mice, and suggesting the presence of a more inflammatory steady-state profile in humans than mice.


Subject(s)
Adipose Tissue, White/immunology , B-Lymphocytes/immunology , Macrophages/immunology , Mesenchymal Stem Cells/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Immune Tolerance , Immunologic Memory , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Middle Aged , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL