Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Hum Mol Genet ; 31(9): 1453-1470, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34791230

ABSTRACT

Spinal muscular atrophy (SMA) is characterized by the loss of alpha motor neurons in the spinal cord and a progressive muscle weakness and atrophy. SMA is caused by loss-of-function mutations and/or deletions in the survival of motor neuron (SMN) gene. The role of SMN in motor neurons has been extensively studied, but its function and the consequences of its loss in muscle have also emerged as a key aspect of SMA pathology. In this study, we explore the molecular mechanisms involved in muscle defects in SMA. First, we show in C2C12 myoblasts, that arginine methylation by CARM1 controls myogenic differentiation. More specifically, the methylation of HuR on K217 regulates HuR levels and subcellular localization during myogenic differentiation, and the formation of myotubes. Furthermore, we demonstrate that SMN and HuR interact in C2C12 myoblasts. Interestingly, the SMA-causing E134K point mutation within the SMN Tudor domain, and CARM1 depletion, modulate the SMN-HuR interaction. In addition, using the Smn2B/- mouse model, we report that CARM1 levels are markedly increased in SMA muscles and that HuR fails to properly respond to muscle denervation, thereby affecting the regulation of its mRNA targets. Altogether, our results show a novel CARM1-HuR axis in the regulation of muscle differentiation and plasticity as well as in the aberrant regulation of this axis caused by the absence of SMN in SMA muscle. With the recent developments of therapeutics targeting motor neurons, this study further indicates the need for more global therapeutic approaches for SMA.


Subject(s)
Muscular Atrophy, Spinal , Animals , Disease Models, Animal , ELAV-Like Protein 1 , Mice , Motor Neurons/metabolism , Muscles/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Survival of Motor Neuron 1 Protein/genetics
2.
Am J Physiol Cell Physiol ; 319(1): C116-C128, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32374678

ABSTRACT

Satellite cell (SC) activation, mediated by nitric oxide (NO), is essential to myogenic repair, whereas myotube function requires innervation. Semaphorin (Sema) 3A, a neuro-chemorepellent, is thought to regulate axon guidance to neuromuscular junctions (NMJs) during myotube differentiation. We tested whether "premature" SC activation (SC activation before injury) by a NO donor (isosorbide dinitrate) would disrupt early myogenesis and/or NMJs. Adult muscle was examined during regeneration in two models of injury: myotoxic cardiotoxin (CTX) and traumatic crush (CR) (n = 4-5/group). Premature SC activation was confirmed by increased DNA synthesis by SCs immediately in pretreated mice after CTX injury. Myotubes grew faster after CTX than after CR; growth was accelerated by pretreatment. NMJ maturation, classified by silver histochemistry (neurites) and acetylcholinesterase (AchE), and α-bungarotoxin staining (Ach receptors, AchRs) were delayed by pretreatment, consistent with a day 6 rise in the denervation marker ƎĀ³-AchR. With pretreatment, S100B from terminal Schwann cells (TSCs) increased 10- to 20-fold at days 0 and 10 after CTX and doubled 6 days after CR. Premature SC activation disrupted motoneuritogenesis 8-10 days post-CTX, as pretreatment reduced colocalization of pre- and postsynaptic NMJ features and increased Sema3A-65. Premature SC activation before injury both accelerated myogenic repair and disrupted NMJ remodeling and maturation, possibly by reducing Sema3A neuro-repulsion and altering S100B. This interpretation extends the model of Sema3A-mediated motoneuritogenesis during muscle regeneration. Manipulating the timing and type of Sema3A by brief NO effects on SCs suggests an important role for TSCs and Sema3A-65 processing in axon guidance and NMJ restoration during muscle repair.


Subject(s)
Muscle Development/physiology , Muscle, Skeletal/injuries , Muscle, Skeletal/metabolism , Neuromuscular Junction/metabolism , Regeneration/physiology , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cell Differentiation/physiology , Male , Mice , Mice, Inbred C57BL , Neuromuscular Junction/pathology , Satellite Cells, Skeletal Muscle/pathology
3.
Aging Cell ; 23(2): e14041, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985931

ABSTRACT

Mechanical perturbation triggers activation of resident myogenic stem cells to enter the cell cycle through a cascade of events including hepatocyte growth factor (HGF) release from its extracellular tethering and the subsequent presentation to signaling-receptor c-met. Here, we show that with aging, extracellular HGF undergoes tyrosine-residue (Y) nitration and loses c-met binding, thereby disturbing muscle homeostasis. Biochemical studies demonstrated that nitration/dysfunction is specific to HGF among other major growth factors and is characterized by its locations at Y198 and Y250 in c-met-binding domains. Direct-immunofluorescence microscopy of lower hind limb muscles from three age groups of rat, provided direct inĀ vivo evidence for age-related increases in nitration of ECM-bound HGF, preferentially stained for anti-nitrated Y198 and Y250-HGF mAbs (raised in-house) in fast IIa and IIx myofibers. Overall, findings highlight inhibitory impacts of HGF nitration on myogenic stem cell dynamics, pioneering a cogent discussion for better understanding age-related muscle atrophy and impaired regeneration with fibrosis (including sarcopenia and frailty).


Subject(s)
Muscles , Signal Transduction , Animals , Rats , Cell Differentiation/physiology , Cell Division , Stem Cells
4.
Cell Biol Int ; 37(5): 415-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23504853

ABSTRACT

Nanotechnology has provided new technological opportunities, which could help in challenges confronting stem cell research. Polyamidoamine (PAMAM) dendrimers, a new class of macromolecular polymers with high molecular uniformity, narrow molecular distribution specific size and shape and highly functionalised terminal surface have been extensively explored for biomedical application. PAMAM dendrimers are also nanospherical, hyperbranched and monodispersive molecules exhibiting exclusive properties which make them potential carriers for drug and gene delivery.


Subject(s)
Dendrimers/chemistry , Gene Transfer Techniques , Cellular Reprogramming , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Nanotechnology , Transcription Factors/metabolism
5.
Front Cell Dev Biol ; 10: 874756, 2022.
Article in English | MEDLINE | ID: mdl-35923848

ABSTRACT

Terminal Schwann cells (TSCs) help regulate the formation, maintenance, function, and repair of neuromuscular junctions (NMJs) and axon guidance after muscle injury. Premature activation of muscle satellite cells (SCs), induced by isosorbide dinitrate (ISDN) before injury, accelerates myogenic regeneration, disrupts NMJ remodeling and maturation, decreases Sema3A protein-induced neuro-repulsion, and is accompanied by time-dependent changes in S100B protein levels. Here, to study the effects of premature SC activation on TSCs and SCs, both expressing P75 nerve growth-factor receptor, in situ hybridization was used to identify transcripts of S100B and Sema3A, and the number, intensity, and diameter of expression sites were analyzed. The number of sites/fields expressing S100B and Sema3A increased with regeneration time (both p < 0.001). Expression-site intensity (S100B) and diameter (S100B and Sema3A) decreased during regeneration (p = 0.005; p < 0.05, p = 0.006, respectively). P75 protein colocalized with a subset of S100B and Sema3A expression sites. Principal component analyses of gene expression, protein levels, and histological variables (fiber diameter, vascular density) in control and ISDN-pretreated groups explained 83% and 64% of the dataset variance, respectively. A very strong loading coefficient for colocalization of P75 protein with S100B and Sema3A mRNAs (0.91) in control regenerating muscle dropped markedly during regeneration disrupted by premature SC activation (-0.10 in Factor 1 to 0.55 in Factor 3). These findings strongly implicate the triple-expression profile by TSCs and/or SCs as a strong correlate of the important synchrony of muscle and nerve regeneration after muscle tissue injury. The results have the potential to focus future research on the complex interplay of TSCs and SCs in neuromuscular tissue repair and help promote effective function after traumatic muscle injury.

6.
Biol Rev Camb Philos Soc ; 92(3): 1389-1405, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27296513

ABSTRACT

Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.


Subject(s)
Muscle, Skeletal/physiology , Neuromuscular Junction/physiology , Regeneration/physiology , Semaphorin-3A/metabolism , Cell Differentiation , Humans , Muscle, Skeletal/cytology , Neurites/physiology
7.
Asian Pac J Cancer Prev ; 17(8): 3711-9, 2016.
Article in English | MEDLINE | ID: mdl-27644605

ABSTRACT

Drawbacks of conventional cancer treatments, with lack of specificity and cytotoxicity using current approaches, underlies the necessity for development of a novel approach, gene-directed cancer therapy. This has provided novel technological opportunities in vitro and in vivo. This review focuses on a member of an apoptosis inhibitor family, survivin, as a valuable target. Not only the gene but also its promoter are applicable in this context. This article is based on a literature survey, with especial attention to RNA interference as well as tumor- specific promoter action. The search engine and databases utilized were Science direct, PubMed, MEDLINE and Google. In addition to cell-cycle modulation, apoptosis inhibition, interaction in cell-signaling pathways, cancer-selective expression, survivin also may be considered as specific target through its promoter as a novel treatment for cancer. Our purpose in writing this article was to create awareness in researchers, emphasizing relation of survivin gene expression to potential cancer treatment. The principal result and major conclusion of this manuscript are that survivin structure, biological functions and applications of RNA interference systems as well as tumor-specific promoter activity are of major interest for cancer gene therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Inhibitor of Apoptosis Proteins/genetics , Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Apoptosis/genetics , Humans , Neoplasms/genetics , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , RNA Interference/drug effects
8.
Tissue Cell ; 47(6): 575-82, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26471847

ABSTRACT

Induced Pluripotent Stem Cells (iPSCs) has been produced by the reprogramming of several types of somatic cells through the expression of different sets of transcription factors. This study consists of a technique to obtain iPSCs from human umbilical cord mesenchymal stem cells (UC-MSCs) in a feeder layer-free process using a mini-circle vector containing defined reprogramming genes, Lin28, Nanog, Oct4 and Sox2. The human MSCs transfected with the minicircle vector were cultured in iPSCs medium. Human embryonic stem cell (ESC)-like colonies with tightly packed domelike structures appeared 7-10 days after the second transfection. In the earliest stages, the colonies were green fluorescence protein (GFP)-positive, while upon continuous culture and passage, genuine hiPSC clones expressing GFP were observed. The induced cells, based on the ectopic expression of the pluripotent markers, exhibited characteristics similar to the embryonic stem cells. These iPSCs demonstrated in vitro capabilities for differentiation into the three main embryonic germ layers by embryoid bodies formation. There was no evidence of transgenes integration into the genome of the iPSCs in this study. In conclusion, this method offers a means of producing iPSCs without viral delivery that could possibly overcome ethical concerns and immune rejection in the use of stem cells in medical applications.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Cell Differentiation/genetics , Cells, Cultured , Embryoid Bodies/cytology , Feeder Cells/cytology , Humans
9.
Int J Nanomedicine ; 10: 1649-66, 2015.
Article in English | MEDLINE | ID: mdl-25767386

ABSTRACT

Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.


Subject(s)
Antineoplastic Agents , Leukemia/drug therapy , Nanostructures/chemistry , Sesquiterpenes , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Carriers/chemistry , Lipids/chemistry , Mice , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL