Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Clin Microbiol ; 58(2)2020 01 28.
Article in English | MEDLINE | ID: mdl-31748325

ABSTRACT

Several commercially available enzyme-linked immunosorbent assays (ELISAs) for the detection of phase II IgG or IgM antibodies against Coxiella burnetii were compared. In addition, an indirect immunofluorescence test was used as a confirmation test. In all, 70 serum samples for IgG and 43 serum samples for IgM were tested. The ELISAs showed large differences in sensitivity and specificity, which led to a partially high ratio of false-negative determinations. The most convincing test was PanBio from Abbott, which unfortunately can only test IgG but not IgM.


Subject(s)
Antibodies, Bacterial/blood , Coxiella burnetii/immunology , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique, Indirect , Immunoglobulin G/blood , Immunoglobulin M/blood , Humans , Q Fever/blood , Q Fever/diagnosis , Q Fever/immunology , Reagent Kits, Diagnostic , Sensitivity and Specificity
2.
Glia ; 65(2): 278-292, 2017 02.
Article in English | MEDLINE | ID: mdl-27778404

ABSTRACT

In response to traumatic brain injury (TBI) microglia/macrophages and astrocytes release inflammatory mediators with dual effects on secondary brain damage progression. The neurotrophic and anti-inflammatory glycoprotein progranulin (PGRN) attenuates neuronal damage and microglia/macrophage activation in brain injury but mechanisms are still elusive. Here, we studied histopathology, neurology and gene expression of inflammatory markers in PGRN-deficient mice (Grn-/- ) 24 h and 5 days after experimental TBI. Grn-/- mice displayed increased perilesional axonal injury even though the overall brain tissue loss and neurological consequences were similar to wild-type mice. Brain inflammation was elevated in Grn-/- mice as reflected by increased transcription of pro-inflammatory cytokines TNFα, IL-1ß, IL-6, and decreased transcription of the anti-inflammatory cytokine IL-10. However, numbers of Iba1+ microglia/macrophages and immigrated CD45+ leukocytes were similar at perilesional sites while determination of IgG extravasation suggested stronger impairment of blood brain barrier integrity in Grn-/- compared to wild-type mice. Most strikingly, Grn-/- mice displayed exaggerated astrogliosis 5 days after TBI as demonstrated by anti-GFAP immunohistochemistry and immunoblot. GFAP+ astrocytes at perilesional sites were immunolabelled for iNOS and TNFα suggesting that pro-inflammatory activation of astrocytes was attenuated by PGRN. Accordingly, recombinant PGRN (rPGRN) attenuated LPS- and cytokine-evoked iNOS and TNFα mRNA expression in cultured astrocytes. Moreover, intracerebroventricular administration of rPGRN immediately before trauma reduced brain damage and neurological deficits, and restored normal levels of cytokine transcription, axonal injury and astrogliosis 5 days after TBI in Grn-/- mice. Our results show that endogenous and recombinant PGRN limit axonal injury and astrogliosis and suggest therapeutic potential of PGRN in TBI. GLIA 2017;65:278-292.


Subject(s)
Axons/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Gliosis/etiology , Gliosis/prevention & control , Intercellular Signaling Peptides and Proteins/therapeutic use , Animals , Animals, Newborn , Astrocytes/drug effects , Astrocytes/pathology , Axons/metabolism , Blood-Brain Barrier/pathology , Calcium-Binding Proteins/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression/drug effects , Gene Expression/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Gliosis/pathology , Granulins , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nervous System Diseases/etiology , Nervous System Diseases/pathology , Progranulins
3.
Glia ; 64(4): 507-23, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26638112

ABSTRACT

Traumatic brain injury (TBI) is a major cause of death and disability. The underlying pathophysiology is characterized by secondary processes including neuronal death and gliosis. To elucidate the role of the NG2 proteoglycan we investigated the response of NG2-knockout mice (NG2-KO) to TBI. Seven days after TBI behavioral analysis, brain damage volumetry and assessment of blood brain barrier integrity demonstrated an exacerbated response of NG2-KO compared to wild-type (WT) mice. Reactive astrocytes and expression of the reactive astrocyte and neurotoxicity marker Lcn2 (Lipocalin-2) were increased in the perilesional brain tissue of NG2-KO mice. In addition, microglia/macrophages with activated morphology were increased in number and mRNA expression of the M2 marker Arg1 (Arginase 1) was enhanced in NG2-KO mice. While TBI-induced expression of pro-inflammatory cytokine genes was unchanged between genotypes, PCR array screening revealed a marked TBI-induced up-regulation of the C-X-C motif chemokine 13 gene Cxcl13 in NG2-KO mice. CXCL13, known to attract immune cells to the inflamed brain, was expressed by activated perilesional microglia/macrophages seven days after TBI. Thirty days after TBI, NG2-KO mice still exhibited more pronounced neurological deficits than WT mice, up-regulation of Cxcl13, enhanced CD45+ leukocyte infiltration and a relative increase of activated Iba-1+/CD45+ microglia/macrophages. Our study demonstrates that lack of NG2 exacerbates the neurological outcome after TBI and associates with abnormal activation of astrocytes, microglia/macrophages and increased leukocyte recruitment to the injured brain. These findings suggest that NG2 may counteract neurological deficits and adverse glial responses in TBI.


Subject(s)
Antigens/metabolism , Brain Injuries/metabolism , Brain/metabolism , Neuroglia/metabolism , Proteoglycans/metabolism , Animals , Antigens/genetics , Arginase/metabolism , Blood-Brain Barrier/metabolism , Brain/pathology , Brain Injuries/pathology , Calcium-Binding Proteins/metabolism , Capillary Permeability/physiology , Cell Count , Cells, Cultured , Chemokine CXCL13/metabolism , Cohort Studies , Disease Models, Animal , Gliosis/metabolism , Gliosis/pathology , Leukocyte Common Antigens/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Neuroglia/pathology , Proteoglycans/genetics , RNA, Messenger/metabolism , Severity of Illness Index
4.
J Neurochem ; 129(6): 940-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24606183

ABSTRACT

HIF-1α is pivotal for cellular homeostasis in response to cerebral ischemia. Pharmacological inhibition of HIF-1α may reduce secondary brain damage by targeting post-translational mechanisms associated with its proteasomal degradation and nuclear translocation. This study examined the neuroprotective effects of 2-methoxyestradiol (2ME2), the involved HIF-1α-dependent response, and alternative splicing in exon 14 of HIF-1α (HIF-1α∆Ex14) after traumatic brain injury (TBI) in mice. Intraperitoneal 2ME2 administration 30 min after TBI caused a dose-dependent reduction in secondary brain damage after 24 h. 2ME2 was physiologically tolerated, showed no effects on immune cell brain migration, and mitigated trauma-induced brain expression of neuropathologically relevant HIF-1α target genes encoding for Plasminogen activator inhibitor 1 and tumor necrosis factor alpha. Moreover, TBI-induced expression of pro-apoptotic BNIP3 was attenuated by 2ME2 treatment. Alternatively, spliced HIF-1α∆Ex14 was substantially up-regulated from 6 to 48 h after TBI. In vitro, nuclear location and gene transcription activity of HIF-1α∆Ex14 were impaired compared to full-length HIF-1α, but no effects on nuclear translocation of the transcriptional complex partner HIF-1ß were observed. This study demonstrates that 2ME2 confers neuroprotection after TBI. While the role of alternatively spliced HIF-1α∆Ex14 remains elusive, the in vivo data provide evidence that inhibition of a maladaptive HIF-1α-dependent response contributes to the neuroprotective effects of 2ME2. We examined neuroprotective effects of 2-methoxyestradiol (2ME2) and the hypoxia-inducible factor 1-α (HIF-1α) response following traumatic brain injury in mice. Early 2ME2 administration reduced the secondary brain damage and neuronal HIF-1α probably involving ubiquitin proteasome system-mediated degradation. The up-regulation of neuropathological HIF-1α target genes and pro-apoptotic BNIP3 protein was attenuated. We propose that the inhibition of a maladaptive HIF-1α response may contribute to 2ME2-mediated neuroprotection.


Subject(s)
Brain Injuries/drug therapy , Brain Injuries/metabolism , Estradiol/analogs & derivatives , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Neuroprotective Agents , Alternative Splicing , Animals , Blotting, Western , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Nucleus/metabolism , Estradiol/pharmacology , Exons/genetics , Gene Expression Regulation/drug effects , Immunohistochemistry , Injections, Intraperitoneal , Male , Membrane Proteins/biosynthesis , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/biosynthesis , Neurons/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Protein Transport , Subcellular Fractions/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/genetics , Up-Regulation/physiology
5.
Microorganisms ; 9(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34835498

ABSTRACT

The causative agent of Q fever, the bacterium Coxiella burnetii (C. burnetii), has gained increasing interest due to outbreak events and reports about it being a potential risk factor for the development of lymphomas. In order to conduct large-scale studies for population monitoring and to investigate possible associations more closely, accurate and cost-effective high-throughput assays are highly desired. To address this need, nine C. burnetii proteins were expressed as recombinant antigens for multiplex serology. This technique enables the quantitative high-throughput detection of antibodies to multiple antigens simultaneously in a single reaction. Based on a reference group of 76 seropositive and 91 seronegative sera, three antigens were able to detect C. burnetii infections. Com1, GroEL, and DnaK achieved specificities of 93%, 69%, and 77% and sensitivities of 64%, 72%, and 47%, respectively. Double positivity to Com1 and GroEL led to a combined specificity of 90% and a sensitivity of 71%. In a subgroup of seropositives with an increased risk for chronic Q fever, the double positivity to these markers reached a specificity of 90% and a sensitivity of 86%. Multiplex serology enables the detection of antibodies against C. burnetii and appears well-suited to investigate associations between C. burnetii infections and the clinical manifestations in large-scale studies.

SELECTION OF CITATIONS
SEARCH DETAIL