Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Sci (Lond) ; 137(15): 1145-1150, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37553961

ABSTRACT

Polycystic kidney disease (PKD) is a developmental disorder, which either manifests in early childhood or later in life, depending on the genetic mutation one harbors. The mechanisms of cyst initiation are not well understood. Increasing literature is now suggesting that Notch signaling may play a critical role in PKD. Activation of Notch signaling is important during nephrogenesis and slows down after development. Deletion of various Notch molecules in the cap mesenchyme leads to formation of cysts and early death in mice. A new study by Belyea et al. has now found that cells of renin lineage may link Notch expression and cystic kidney disease. Here, we use our understanding of Notch signaling and PKD to speculate about the significance of these interactions.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Child, Preschool , Mice , Humans , Animals , Renin/genetics , Renin/metabolism , Polycystic Kidney Diseases/genetics , Signal Transduction , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Kidney/metabolism
2.
Kidney Int ; 102(5): 1103-1114, 2022 11.
Article in English | MEDLINE | ID: mdl-35760151

ABSTRACT

Polycystic kidney disease (PKD) is characterized by the formation and progressive enlargement of fluid-filled cysts due to abnormal cell proliferation. Cyclic AMP agonists, including arginine vasopressin, stimulate ERK-dependent proliferation of cystic cells, but not normal kidney cells. Previously, B-Raf proto-oncogene (BRAF), a MAPK kinase kinase that activates MEK-ERK signaling, was shown to be a central intermediate in the cAMP mitogenic response. However, the role of BRAF on cyst formation and enlargement in vivo had not been demonstrated. To determine if active BRAF induces kidney cyst formation, we generated transgenic mice that conditionally express BRAFV600E, a common activating mutation, and bred them with Pkhd1-Cre mice to express active BRAF in the collecting ducts, a predominant site for cyst formation. Collecting duct expression of BRAFV600E (BRafCD) caused kidney cyst formation as early as three weeks of age. There were increased levels of phosphorylated ERK (p-ERK) and proliferating cell nuclear antigen, a marker for cell proliferation. BRafCD mice developed extensive kidney fibrosis and elevated blood urea nitrogen, indicating a decline in kidney function, by ten weeks of age. BRAFV600E transgenic mice were also bred to Pkd1RC/RC and pcy/pcy mice, well-characterized slowly progressive PKD models. Collecting duct expression of active BRAF markedly increased kidney weight/body weight, cyst number and size, and total cystic area. There were increased p-ERK levels and proliferating cells, immune cell infiltration, interstitial fibrosis, and a decline in kidney function in both these models. Thus, our findings demonstrate that active BRAF is sufficient to induce kidney cyst formation in normal mice and accelerate cystic disease in PKD mice.


Subject(s)
Cysts , Kidney Tubules, Collecting , Polycystic Kidney, Autosomal Dominant , Polycystic Kidney, Autosomal Recessive , Mice , Animals , Kidney Tubules, Collecting/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Cyclic AMP/metabolism , Fibrosis , Polycystic Kidney, Autosomal Recessive/genetics , Mice, Transgenic , Cysts/genetics , Cysts/pathology , Arginine Vasopressin/genetics , Arginine Vasopressin/metabolism , Proto-Oncogenes , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Receptors, Cell Surface/metabolism
3.
FASEB J ; 35(5): e21533, 2021 05.
Article in English | MEDLINE | ID: mdl-33826787

ABSTRACT

Polycystic kidney disease (PKD) is a genetic disorder characterized by aberrant renal epithelial cell proliferation and formation and progressive growth of numerous fluid-filled cysts within the kidneys. Previously, we showed that there is elevated Notch signaling compared to normal renal epithelial cells and that Notch signaling contributes to the proliferation of cystic cells. Quinomycin A, a bis-intercalator peptide, has previously been shown to target the Notch signaling pathway and inhibit tumor growth in cancer. Here, we show that Quinomycin A decreased cell proliferation and cyst growth of human ADPKD cyst epithelial cells cultured within a 3D collagen gel. Treatment with Quinomycin A reduced kidney weight to body weight ratio and decreased renal cystic area and fibrosis in Pkd1RC/RC ; Pkd2+/- mice, an orthologous PKD mouse model. This was accompanied by reduced expression of Notch pathway proteins, RBPjk and HeyL and cell proliferation in kidneys of PKD mice. Quinomycin A treatments also normalized cilia length of cyst epithelial cells derived from the collecting ducts. This is the first study to demonstrate that Quinomycin A effectively inhibits PKD progression and suggests that Quinomycin A has potential therapeutic value for PKD patients.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cysts/drug therapy , Disease Models, Animal , Echinomycin/pharmacology , Polycystic Kidney Diseases/complications , TRPP Cation Channels/physiology , Animals , Cysts/etiology , Cysts/metabolism , Cysts/pathology , Disease Progression , Mice , Mice, Inbred C57BL , Mice, Knockout
4.
J Mol Cell Biol ; 14(7)2022 09 27.
Article in English | MEDLINE | ID: mdl-36002021

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive enlargement of fluid-filled cysts, causing nephron loss and a decline in renal function. Mammalian target of rapamycin (mTOR) is overactive in cyst-lining cells and contributes to abnormal cell proliferation and cyst enlargement; however, the mechanism for mTOR stimulation remains unclear. We discovered that calcium/calmodulin (CaM) dependent kinase IV (CaMK4), a multifunctional kinase, is overexpressed in the kidneys of ADPKD patients and PKD mouse models. In human ADPKD cells, CaMK4 knockdown reduced mTOR abundance and the phosphorylation of ribosomal protein S6 kinase (S6K), a downstream target of mTOR. Pharmacologic inhibition of CaMK4 with KN-93 reduced phosphorylated S6K and S6 levels and inhibited cell proliferation and in vitro cyst formation of ADPKD cells. Moreover, inhibition of calcium/CaM-dependent protein kinase kinase-ß and CaM, two key upstream regulators of CaMK4, also decreased mTOR signaling. The effects of KN-93 were independent of the liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) pathway, and the combination of KN-93 and metformin, an AMPK activator, had additive inhibitory effects on mTOR signaling and in vitro cyst growth. Our data suggest that increased CaMK4 expression and activity contribute to mTOR signaling and the proliferation of cystic cells of ADPKD kidneys.


Subject(s)
Cysts , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Mice , Animals , Humans , Polycystic Kidney, Autosomal Dominant/metabolism , AMP-Activated Protein Kinases/metabolism , Calcium , Polycystic Kidney Diseases/metabolism , TOR Serine-Threonine Kinases/metabolism , Kidney/metabolism , Cell Proliferation , Mammals , Calcium-Calmodulin-Dependent Protein Kinase Type 4
SELECTION OF CITATIONS
SEARCH DETAIL