Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 379
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(22): e2218565120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216540

ABSTRACT

A long-standing topic of interest in human neurosciences is the understanding of the neurobiology underlying human cognition. Less commonly considered is to what extent such systems may be shared with other species. We examined individual variation in brain connectivity in the context of cognitive abilities in chimpanzees (n = 45) and humans in search of a conserved link between cognition and brain connectivity across the two species. Cognitive scores were assessed on a variety of behavioral tasks using chimpanzee- and human-specific cognitive test batteries, measuring aspects of cognition related to relational reasoning, processing speed, and problem solving in both species. We show that chimpanzees scoring higher on such cognitive skills display relatively strong connectivity among brain networks also associated with comparable cognitive abilities in the human group. We also identified divergence in brain networks that serve specialized functions across humans and chimpanzees, such as stronger language connectivity in humans and relatively more prominent connectivity between regions related to spatial working memory in chimpanzees. Our findings suggest that core neural systems of cognition may have evolved before the divergence of chimpanzees and humans, along with potential differential investments in other brain networks relating to specific functional specializations between the two species.


Subject(s)
Connectome , Pan troglodytes , Animals , Humans , Neurobiology , Brain , Cognition , Magnetic Resonance Imaging
2.
Mol Psychiatry ; 29(5): 1501-1509, 2024 May.
Article in English | MEDLINE | ID: mdl-38278993

ABSTRACT

Biased emotion processing has been suggested to underlie the etiology and maintenance of depression. Neuroimaging studies have shown mood-congruent alterations in amygdala activity in patients with acute depression, even during early, automatic stages of emotion processing. However, due to a lack of prospective studies over periods longer than 8 weeks, it is unclear whether these neurofunctional abnormalities represent a persistent correlate of depression even in remission. In this prospective case-control study, we aimed to examine brain functional correlates of automatic emotion processing in the long-term course of depression. In a naturalistic design, n = 57 patients with acute major depressive disorder (MDD) and n = 37 healthy controls (HC) were assessed with functional magnetic resonance imaging (fMRI) at baseline and after 2 years. Patients were divided into two subgroups according to their course of illness during the study period (n = 37 relapse, n = 20 no-relapse). During fMRI, participants underwent an affective priming task that assessed emotion processing of subliminally presented sad and happy compared to neutral face stimuli. A group × time × condition (3 × 2 × 2) ANOVA was performed for the amygdala as region-of-interest (ROI). At baseline, there was a significant group × condition interaction, resulting from amygdala hyperactivity to sad primes in patients with MDD compared to HC, whereas no difference between groups emerged for happy primes. In both patient subgroups, amygdala hyperactivity to sad primes persisted after 2 years, regardless of relapse or remission at follow-up. The results suggest that amygdala hyperactivity during automatic processing of negative stimuli persists during remission and represents a trait rather than a state marker of depression. Enduring neurofunctional abnormalities may reflect a consequence of or a vulnerability to depression.


Subject(s)
Amygdala , Depressive Disorder, Major , Emotions , Magnetic Resonance Imaging , Humans , Amygdala/physiopathology , Male , Female , Adult , Magnetic Resonance Imaging/methods , Depressive Disorder, Major/physiopathology , Emotions/physiology , Case-Control Studies , Middle Aged , Prospective Studies , Facial Expression , Depression/physiopathology , Brain Mapping/methods , Subliminal Stimulation
3.
Mol Psychiatry ; 29(9): 2724-2732, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38553539

ABSTRACT

Recurrences of depressive episodes in major depressive disorder (MDD) can be explained by the diathesis-stress model, suggesting that stressful life events (SLEs) can trigger MDD episodes in individuals with pre-existing vulnerabilities. However, the longitudinal neurobiological impact of SLEs on gray matter volume (GMV) in MDD and its interaction with early-life adversity remains unresolved. In 754 participants aged 18-65 years (362 MDD patients; 392 healthy controls; HCs), we assessed longitudinal associations between SLEs (Life Events Questionnaire) and whole-brain GMV changes (3 Tesla MRI) during a 2-year interval, using voxel-based morphometry in SPM12/CAT12. We also explored the potential moderating role of childhood maltreatment (Childhood Trauma Questionnaire) on these associations. Over the 2-year interval, HCs demonstrated significant GMV reductions in the middle frontal, precentral, and postcentral gyri in response to higher levels of SLEs, while MDD patients showed no such GMV changes. Childhood maltreatment did not moderate these associations in either group. However, MDD patients who had at least one depressive episode during the 2-year interval, compared to those who did not, or HCs, showed GMV increases in the middle frontal, precentral, and postcentral gyri associated with an increase in SLEs and childhood maltreatment. Our findings indicate distinct GMV changes in response to SLEs between MDD patients and HCs. GMV decreases in HCs may represent adaptive responses to stress, whereas GMV increases in MDD patients with both childhood maltreatment and a depressive episode during the 2-year interval may indicate maladaptive changes, suggesting a neural foundation for the diathesis-stress model in MDD recurrences.


Subject(s)
Depressive Disorder, Major , Gray Matter , Magnetic Resonance Imaging , Stress, Psychological , Humans , Depressive Disorder, Major/pathology , Depressive Disorder, Major/physiopathology , Female , Gray Matter/pathology , Male , Adult , Middle Aged , Magnetic Resonance Imaging/methods , Adolescent , Aged , Young Adult , Longitudinal Studies , Brain/pathology , Life Change Events , Adverse Childhood Experiences , Child Abuse/psychology
4.
Mol Psychiatry ; 29(10): 3151-3159, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38693319

ABSTRACT

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.


Subject(s)
Brain , Depressive Disorder, Major , Magnetic Resonance Imaging , Neuropsychological Tests , Tumor Necrosis Factor-alpha , Humans , Depressive Disorder, Major/genetics , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/metabolism , Male , Female , Adult , Tumor Necrosis Factor-alpha/metabolism , Brain/metabolism , Brain/physiopathology , Middle Aged , Magnetic Resonance Imaging/methods , Multifactorial Inheritance/genetics , Nerve Net/metabolism , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Processing Speed
5.
Mol Psychiatry ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806692

ABSTRACT

Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.

6.
Mol Psychiatry ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112778

ABSTRACT

Resilience is the capacity to adapt to stressful life events. As such, this trait is associated with physical and mental functions and conditions. Here, we aimed to identify the genetic factors contributing to shape resilience. We performed variant- and gene-based meta-analyses of genome-wide association studies from six German cohorts (N = 15822) using the 11-item version of the Resilience Scale (RS-11) as outcome measure. Variant- and gene-level results were combined to explore the biological context using network analysis. In addition, we conducted tests of correlation between RS-11 and the polygenic scores (PGSs) for 12 personality and mental health traits in one of these cohorts (PROCAM-2, N = 3879). The variant-based analysis found no signals associated with resilience at the genome-wide level (p < 5 × 10-8), but suggested five genomic loci (p < 1 × 10-5). The gene-based analysis identified three genes (ROBO1, CIB3 and LYPD4) associated with resilience at genome-wide level (p < 2.48 × 10-6) and 32 potential candidates (p < 1 × 10-4). Network analysis revealed enrichment of biological pathways related to neuronal proliferation and differentiation, synaptic organization, immune responses and vascular homeostasis. We also found significant correlations (FDR < 0.05) between RS-11 and the PGSs for neuroticism and general happiness. Overall, our observations suggest low heritability of resilience. Large, international efforts will be required to uncover the genetic factors that contribute to shape trait resilience. Nevertheless, as the largest investigation of the genetics of resilience in general population to date, our study already offers valuable insights into the biology potentially underlying resilience and resilience's relationship with other personality traits and mental health.

7.
Mol Psychiatry ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39367057

ABSTRACT

Anxiety disorders (AD) are associated with altered connectivity in large-scale intrinsic brain networks. It remains uncertain how much these signatures overlap across different phenotypes due to a lack of well-powered cross-disorder comparisons. We used resting-state functional magnetic resonance imaging (rsfMRI) to investigate differences in functional connectivity (FC) in a cross-disorder sample of AD patients and healthy controls (HC). Before treatment, 439 patients from two German multicenter clinical trials at eight different sites fulfilling a primary diagnosis of panic disorder and/or agoraphobia (PD/AG, N = 154), social anxiety disorder (SAD, N = 95), or specific phobia (SP, N = 190) and 105 HC underwent an 8 min rsfMRI assessment. We performed categorical and dimensional regions of interest (ROI)-to-ROI analyses focusing on connectivity between regions of the defensive system and prefrontal regulation areas. AD patients showed increased connectivity between the insula and the thalamus compared to controls. This was mainly driven by PD/AG patients who showed increased (insula/hippocampus/amygdala-thalamus) and decreased (dorsomedial prefrontal cortex/periaqueductal gray-anterior cingulate cortex) positive connectivity between subcortical and cortical areas. In contrast, SAD patients showed decreased negative connectivity exclusively in cortical areas (insula-orbitofrontal cortex), whereas no differences were found in SP patients. State anxiety associated with the scanner environment did not explain the FC between these regions. Only PD/AG patients showed pronounced connectivity changes along a widespread subcortical-cortical network, including the midbrain. Dimensional analyses yielded no significant results. The results highlighting categorical differences between ADs at a systems neuroscience level are discussed within the context of personalized neuroscience-informed treatments. PROTECT-AD's registration at NIMH Protocol Registration System: 01EE1402A and German Register of Clinical Studies: DRKS00008743. SpiderVR's registration at ClinicalTrials.gov: NCT03208400.

8.
Mol Psychiatry ; 29(10): 3086-3096, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38671214

ABSTRACT

Formal thought disorder (FTD) is a clinical key factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, the relationship between FTD symptom dimensions and patterns of regional brain volume loss in schizophrenia remains to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles by enrolling a large multi-site cohort acquired by the ENIGMA Schizophrenia Working Group (752 schizophrenia patients and 1256 controls), to unravel the neuroanatomy of FTD in schizophrenia and using virtual histology tools on implicated brain regions to investigate the cellular basis. Based on the findings of previous clinical and neuroimaging studies, we decided to separately explore positive, negative and total formal thought disorder. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but positive and negative FTD demonstrated a dissociation: negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD also showed associations with microglial cell types. These results provide an important step towards linking FTD to brain structural changes and their cellular underpinnings, providing an avenue for a better mechanistic understanding of this syndrome.


Subject(s)
Brain , Schizophrenia , Schizophrenic Psychology , Humans , Schizophrenia/pathology , Schizophrenia/physiopathology , Male , Female , Adult , Brain/pathology , Middle Aged , Neuroimaging/methods , Cohort Studies , Magnetic Resonance Imaging/methods , Thinking/physiology
9.
Mol Psychiatry ; 29(6): 1869-1881, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38336840

ABSTRACT

Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.


Subject(s)
Connectome , Magnetic Resonance Imaging , Schizophrenia , Humans , Schizophrenia/pathology , Schizophrenia/physiopathology , Connectome/methods , Adult , Female , Male , Magnetic Resonance Imaging/methods , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Nerve Net/pathology , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Brain/pathology , Brain/physiopathology , Middle Aged , Neural Pathways/physiopathology , Neural Pathways/pathology , Young Adult
10.
Neuroimage ; 295: 120639, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38796977

ABSTRACT

Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.


Subject(s)
Anxiety Disorders , Cognitive Behavioral Therapy , Machine Learning , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Female , Male , Anxiety Disorders/therapy , Anxiety Disorders/diagnostic imaging , Anxiety Disorders/physiopathology , Adult , Cognitive Behavioral Therapy/methods , Middle Aged , Treatment Outcome , Brain/diagnostic imaging , Brain/physiopathology , Young Adult , Implosive Therapy/methods
11.
Hum Brain Mapp ; 45(4): e26543, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38069537

ABSTRACT

The brain's structural network follows a hierarchy that is described as rich club (RC) organization, with RC hubs forming the well-interconnected top of this hierarchy. In this study, we tested whether RC hubs are involved in the processing of hierarchically higher structures in stimulus sequences. Moreover, we explored the role of previously suggested cortical gradients along anterior-posterior and medial-lateral axes throughout the frontal cortex. To this end, we conducted a functional magnetic resonance imaging (fMRI) experiment and presented participants with blocks of digit sequences that were structured on different hierarchically nested levels. We additionally collected diffusion weighted imaging data of the same subjects to identify RC hubs. This classification then served as the basis for a region of interest analysis of the fMRI data. Moreover, we determined structural network centrality measures in areas that were found as activation clusters in the whole-brain fMRI analysis. Our findings support the previously found anterior and medial shift for processing hierarchically higher structures of stimuli. Additionally, we found that the processing of hierarchically higher structures of the stimulus structure engages RC hubs more than for lower levels. Areas involved in the functional processing of hierarchically higher structures were also more likely to be part of the structural RC and were furthermore more central to the structural network. In summary, our results highlight the potential role of the structural RC organization in shaping the cortical processing hierarchy.


Subject(s)
Brain , Connectome , Humans , Brain/physiology , Connectome/methods , Neural Pathways/physiology , Magnetic Resonance Imaging , Diffusion Magnetic Resonance Imaging
12.
Hum Brain Mapp ; 45(10): e26768, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949537

ABSTRACT

Structural neuroimaging data have been used to compute an estimate of the biological age of the brain (brain-age) which has been associated with other biologically and behaviorally meaningful measures of brain development and aging. The ongoing research interest in brain-age has highlighted the need for robust and publicly available brain-age models pre-trained on data from large samples of healthy individuals. To address this need we have previously released a developmental brain-age model. Here we expand this work to develop, empirically validate, and disseminate a pre-trained brain-age model to cover most of the human lifespan. To achieve this, we selected the best-performing model after systematically examining the impact of seven site harmonization strategies, age range, and sample size on brain-age prediction in a discovery sample of brain morphometric measures from 35,683 healthy individuals (age range: 5-90 years; 53.59% female). The pre-trained models were tested for cross-dataset generalizability in an independent sample comprising 2101 healthy individuals (age range: 8-80 years; 55.35% female) and for longitudinal consistency in a further sample comprising 377 healthy individuals (age range: 9-25 years; 49.87% female). This empirical examination yielded the following findings: (1) the accuracy of age prediction from morphometry data was higher when no site harmonization was applied; (2) dividing the discovery sample into two age-bins (5-40 and 40-90 years) provided a better balance between model accuracy and explained age variance than other alternatives; (3) model accuracy for brain-age prediction plateaued at a sample size exceeding 1600 participants. These findings have been incorporated into CentileBrain (https://centilebrain.org/#/brainAGE2), an open-science, web-based platform for individualized neuroimaging metrics.


Subject(s)
Aging , Brain , Magnetic Resonance Imaging , Humans , Adolescent , Female , Aged , Adult , Child , Young Adult , Male , Brain/diagnostic imaging , Brain/anatomy & histology , Brain/growth & development , Aged, 80 and over , Child, Preschool , Middle Aged , Aging/physiology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Neuroimaging/standards , Sample Size
13.
Hum Brain Mapp ; 45(8): e26682, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38825977

ABSTRACT

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.


Subject(s)
Bipolar Disorder , Magnetic Resonance Imaging , Obesity , Principal Component Analysis , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Bipolar Disorder/pathology , Adult , Female , Male , Magnetic Resonance Imaging/methods , Middle Aged , Obesity/diagnostic imaging , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Schizophrenia/drug therapy , Schizophrenia/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cluster Analysis , Young Adult , Brain/diagnostic imaging , Brain/pathology
14.
Psychol Med ; 54(5): 940-950, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37681274

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) studies on major depressive disorder (MDD) have predominantly found short-term electroconvulsive therapy (ECT)-related gray matter volume (GMV) increases, but research on the long-term stability of such changes is missing. Our aim was to investigate long-term GMV changes over a 2-year period after ECT administration and their associations with clinical outcome. METHODS: In this nonrandomized longitudinal study, patients with MDD undergoing ECT (n = 17) are assessed three times by structural MRI: Before ECT (t0), after ECT (t1) and 2 years later (t2). A healthy (n = 21) and MDD non-ECT (n = 33) control group are also measured three times within an equivalent time interval. A 3(group) × 3(time) ANOVA on whole-brain level and correlation analyses with clinical outcome variables is performed. RESULTS: Analyses yield a significant group × time interaction (pFWE < 0.001) resulting from significant volume increases from t0 to t1 and decreases from t1 to t2 in the ECT group, e.g., in limbic areas. There are no effects of time in both control groups. Volume increases from t0 to t1 correlate with immediate and delayed symptom increase, while volume decreases from t1 to t2 correlate with long-term depressive outcome (all p ⩽ 0.049). CONCLUSIONS: Volume increases induced by ECT appear to be a transient phenomenon as volume strongly decreased 2 years after ECT. Short-term volume increases are associated with less symptom improvement suggesting that the antidepressant effect of ECT is not due to volume changes. Larger volume decreases are associated with poorer long-term outcome highlighting the interplay between disease progression and structural changes.


Subject(s)
Depressive Disorder, Major , Electroconvulsive Therapy , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Depressive Disorder, Major/pathology , Electroconvulsive Therapy/methods , Depression , Longitudinal Studies , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods
15.
Psychol Med ; 54(6): 1215-1227, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37859592

ABSTRACT

BACKGROUND: Schizotypy represents an index of psychosis-proneness in the general population, often associated with childhood trauma exposure. Both schizotypy and childhood trauma are linked to structural brain alterations, and it is possible that trauma exposure moderates the extent of brain morphological differences associated with schizotypy. METHODS: We addressed this question using data from a total of 1182 healthy adults (age range: 18-65 years old, 647 females/535 males), pooled from nine sites worldwide, contributing to the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Schizotypy working group. All participants completed both the Schizotypal Personality Questionnaire Brief version (SPQ-B), and the Childhood Trauma Questionnaire (CTQ), and underwent a 3D T1-weighted brain MRI scan from which regional indices of subcortical gray matter volume and cortical thickness were determined. RESULTS: A series of multiple linear regressions revealed that differences in cortical thickness in four regions-of-interest were significantly associated with interactions between schizotypy and trauma; subsequent moderation analyses indicated that increasing levels of schizotypy were associated with thicker left caudal anterior cingulate gyrus, right middle temporal gyrus and insula, and thinner left caudal middle frontal gyrus, in people exposed to higher (but not low or average) levels of childhood trauma. This was found in the context of morphological changes directly associated with increasing levels of schizotypy or increasing levels of childhood trauma exposure. CONCLUSIONS: These results suggest that alterations in brain regions critical for higher cognitive and integrative processes that are associated with schizotypy may be enhanced in individuals exposed to high levels of trauma.


Subject(s)
Adverse Childhood Experiences , Psychological Tests , Schizotypal Personality Disorder , Self Report , Adult , Male , Female , Humans , Adolescent , Young Adult , Middle Aged , Aged , Schizotypal Personality Disorder/diagnostic imaging , Schizotypal Personality Disorder/psychology , Brain/diagnostic imaging , Gray Matter , Magnetic Resonance Imaging/methods
16.
Psychol Med ; : 1-11, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801091

ABSTRACT

BACKGROUND: Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS: In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS: Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS: Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.

17.
Brain Behav Immun ; 119: 978-988, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761819

ABSTRACT

BACKGROUND: Neuroinflammation affects brain tissue integrity in multiple sclerosis (MS) and may have a role in major depressive disorder (MDD). Whether advanced magnetic resonance imaging characteristics of the gray-to-white matter border serve as proxy of neuroinflammatory activity in MDD and MS remain unknown. METHODS: We included 684 participants (132 MDD patients with recurrent depressive episodes (RDE), 70 MDD patients with a single depressive episode (SDE), 222 MS patients without depressive symptoms (nMS), 58 MS patients with depressive symptoms (dMS), and 202 healthy controls (HC)). 3 T-T1w MRI-derived gray-to-white matter contrast (GWc) was used to reconstruct and characterize connectivity alterations of GWc-covariance networks by means of modularity, clustering coefficient, and degree. A cross-validated support vector machine was used to test the ability of GWc to stratify groups according to their depression symptoms, measured with BDI, at the single-subject level in MS and MDD independently. FINDINGS: MS and MDD patients showed increased modularity (ANOVA partial-η2 = 0.3) and clustering (partial-η2 = 0.1) compared to HC. In the subgroups, a linear trend analysis attested a gradient of modularity increases in the form: HC, dMS, nMS, SDE, and RDE (ANOVA partial-η2 = 0.28, p < 0.001) while this trend was less evident for clustering coefficient. Reduced morphological integrity (GWc) was seen in patients with increased depressive symptoms (partial-η2 = 0.42, P < 0.001) and was associated with depression scores across patient groups (r = -0.2, P < 0.001). Depressive symptoms in MS were robustly classified (88 %). CONCLUSIONS: Similar structural network alterations in MDD and MS exist, suggesting possible common inflammatory events like demyelination, neuroinflammation that are caught by GWc analyses. These alterations may vary depending on the severity of symptoms and in the case of MS may elucidate the occurrence of comorbid depression.


Subject(s)
Brain , Depression , Depressive Disorder, Major , Gray Matter , Inflammation , Magnetic Resonance Imaging , Multiple Sclerosis , White Matter , Humans , Female , Male , Adult , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis/psychology , Multiple Sclerosis/complications , Multiple Sclerosis/physiopathology , Middle Aged , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , White Matter/pathology , Depression/physiopathology , Gray Matter/pathology , Gray Matter/diagnostic imaging , Neuroinflammatory Diseases/diagnostic imaging
18.
Mol Psychiatry ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38036604

ABSTRACT

Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation.

19.
Mol Psychiatry ; 28(3): 1057-1063, 2023 03.
Article in English | MEDLINE | ID: mdl-36639510

ABSTRACT

Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.


Subject(s)
Connectome , Depressive Disorder, Major , Humans , Diffusion Tensor Imaging , Genetic Predisposition to Disease , Magnetic Resonance Imaging/methods , Brain
20.
Mol Psychiatry ; 28(7): 3013-3022, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36792654

ABSTRACT

The promise of machine learning has fueled the hope for developing diagnostic tools for psychiatry. Initial studies showed high accuracy for the identification of major depressive disorder (MDD) with resting-state connectivity, but progress has been hampered by the absence of large datasets. Here we used regular machine learning and advanced deep learning algorithms to differentiate patients with MDD from healthy controls and identify neurophysiological signatures of depression in two of the largest resting-state datasets for MDD. We obtained resting-state functional magnetic resonance imaging data from the REST-meta-MDD (N = 2338) and PsyMRI (N = 1039) consortia. Classification of functional connectivity matrices was done using support vector machines (SVM) and graph convolutional neural networks (GCN), and performance was evaluated using 5-fold cross-validation. Features were visualized using GCN-Explainer, an ablation study and univariate t-testing. The results showed a mean classification accuracy of 61% for MDD versus controls. Mean accuracy for classifying (non-)medicated subgroups was 62%. Sex classification accuracy was substantially better across datasets (73-81%). Visualization of the results showed that classifications were driven by stronger thalamic connections in both datasets, while nearly all other connections were weaker with small univariate effect sizes. These results suggest that whole brain resting-state connectivity is a reliable though poor biomarker for MDD, presumably due to disease heterogeneity as further supported by the higher accuracy for sex classification using the same methods. Deep learning revealed thalamic hyperconnectivity as a prominent neurophysiological signature of depression in both multicenter studies, which may guide the development of biomarkers in future studies.


Subject(s)
Depressive Disorder, Major , Humans , Brain Mapping/methods , Magnetic Resonance Imaging , Neural Pathways , Brain/pathology , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL