Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Toxins (Basel) ; 15(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37505710

ABSTRACT

Consumption coagulopathy and hemorrhagic syndrome exacerbated by blood anticoagulability remain the most important causes of lethality associated with Bothrops snake envenomation. Bothrops venom also engages platelet aggregation on the injured endothelium via von Willebrand factor (vWF) interactions. Besides platelet aggregation, some Bothrops venom toxins may induce qualitative thrombopathy, which has been in part related to the inhibition of vWF activation. We tested whether B. lanceolatus venom impaired vWF to collagen(s) binding (vWF:CB) activity. Experiments were performed with B. lanceolatus crude venom, in the presence or absence of Bothrofav, a monospecific B. lanceolatus antivenom. Venom of B. lanceolatus fully inhibited vWF to collagen type I and III binding, suggesting venom interactions with the vWF A3 domain. In contrast, B. lanceolatus venom increased vWF to collagen type VI binding, suggesting the enhancement of vWF binding to collagen at the vWF A1 domain. Hence, B. lanceolatus venom exhibited contrasting in vitro effects in terms of the adhesive properties of vWF to collagen. On the other hand, the antivenom Bothrofav reversed the inhibitory effects of B. lanceolatus venom on vWF collagen binding activity. In light of the respective distribution of collagen type III and collagen type VI in perivascular connective tissue and the sub-endothelium, a putative association between an increase in vWF:CB activity for collagen type VI and the onset of thrombotic events in human B. lanceolatus envenomation might be considered.


Subject(s)
Bothrops , Crotalid Venoms , Thrombosis , Animals , Humans , Antivenins/pharmacology , von Willebrand Factor/metabolism , Bothrops/metabolism , Collagen Type VI/metabolism , Crotalid Venoms/chemistry
2.
PLoS Negl Trop Dis ; 16(6): e0010523, 2022 06.
Article in English | MEDLINE | ID: mdl-35727836

ABSTRACT

INTRODUCTION: Envenomations by Bothrops snakebites can induce overwhelming systemic inflammation ultimately leading to multiple organ system failure and death. Release of damage-associated molecular pattern molecules (DAMPs), in particular of mitochondrial origin, has been implicated in the pathophysiology of the deregulated innate immune response. OBJECTIVE: To test whether whole Bothrops lanceolatus venom would induce mitochondrial dysfunction and DAMPs release in human heart preparations. METHODS: Human atrial trabeculae were obtained during cannulation for cardiopulmonary bypass from patients who were undergoing routine coronary artery bypass surgery. Cardiac fibers were incubated with vehicle and whole Bothrops lanceolatus venom for 24hr before high-resolution respirometry, mitochondrial membrane permeability evaluation and quantification of mitochondrial DNA. RESULTS: Compared with vehicle, incubation of human cardiac muscle with whole Bothrops lanceolatus venom for 24hr impaired respiratory control ratio and mitochondrial membrane permeability. Levels of mitochondrial DNA increased in the medium of cardiac cell preparation incubated with venom of Bothrops lanceolatus. CONCLUSION: Our study suggests that whole venom of Bothrops lanceolatus impairs mitochondrial oxidative phosphorylation capacity and increases mitochondrial membrane permeability. Cardiac mitochondrial dysfunction associated with mitochondrial DAMPs release may alter myocardium function and engage the innate immune response, which may both participate to the cardiotoxicity occurring in patients with severe envenomation.


Subject(s)
Bothrops , Crotalid Venoms , Snake Bites , Animals , Crotalid Venoms/toxicity , DNA, Mitochondrial , Humans , Mitochondria , Respiration , Snake Venoms
3.
Retrovirology ; 2: 4, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15686595

ABSTRACT

BACKGROUND: Human T-lymphotropic virus type 1 (HTLV-1) proviral load is related to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and has also been shown to be elevated in the peripheral blood in HTLV-1-infected patients with uveitis or alveolitis. Increased proliferation of HTLV-1-infected cells in, or migration of such cells into, the central nervous system is also seen in HAM/TSP. In the present study, we evaluated the proviral load in a cohort of HTLV-1-infected patients with arthritic conditions. RESULTS: HTLV-1 proviral load in the peripheral blood from 12 patients with RA and 6 patients with connective tissue disease was significantly higher than that in matched asymptomatic HTLV-1 carriers, but similar to that in matched HAM/TSP controls. HAM/TSP was seen in one-third of the HTLV-1-infected patients with RA or connective tissue disease, but did not account for the higher proviral load compared to the asymptomatic carrier group. The proviral load was increased in the synovial fluid and tissue from an HTLV-1-infected patient with RA, the values suggesting that the majority of infiltrated cells were HTLV-1-infected. In the peripheral blood from HTLV-1-infected patients with RA or connective tissue disease, HTLV-1 proviral load correlated with the percentages of memory CD4+ T cells and activated T cells, and these percentages were shown to be markedly higher in the synovial fluid than in the peripheral blood in an HTLV-1-infected patient with RA. CONCLUSIONS: These biological findings are consistent with a role of the retrovirus in the development of arthritis in HTLV-1-infected patients. A high level of HTLV-1-infected lymphocytes in the peripheral blood and their accumulation in situ might play a central role in the pathogenesis of HTLV-1-associated inflammatory disorders. Alternatively, the autoimmune arthritis, its etiological factors or treatments might secondarily enhance HTLV-1 proviral load.


Subject(s)
Arthritis, Rheumatoid/virology , Connective Tissue Diseases/virology , HTLV-I Infections/virology , Human T-lymphotropic virus 1/physiology , Proviruses/physiology , Viral Load , Adult , Aged , Arthritis, Rheumatoid/complications , Carrier State/virology , Connective Tissue Diseases/complications , DNA, Viral/blood , Female , HTLV-I Infections/complications , Humans , Male , Middle Aged , Paraparesis, Tropical Spastic/virology
4.
Transfusion ; 44(1): 42-8, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14692966

ABSTRACT

BACKGROUND: WBC depletion by filtration may prevent the transmission of HTLV-I, which requires cell-to-cell contact. The removal of HTLV-I-infected cells in routinely filtered blood cell components was measured. STUDY DESIGN AND METHODS: The study was conducted in Martinique where systematic screening for HTLV-I and -II and universal leukoreduction are mandatory. HTLV-I was quantified by use of real-time PCR in 8 RBC units and 4 PLT concentrates before and after filtration. HTLV-I proviral load in PBMNCs was determined in five of the eight HTLV-I-infected blood donors. RESULTS: The amount of MNC-associated HTLV-I DNA in RBC units before filtration was 21 x 10(6)+/- 29 x 10(6) copies (mean +/- SD). HTLV-I was detected in 4 of 8 RBC units after filtration, with a number of copies in the MNC fraction ranging from 20 to 140, following a 4.9 to 5.8 log reduction. Flow cytometry analysis performed in 2 of the filtered RBC units containing detectable HTLV-I showed suboptimal and out-of-range leukoreduction (0.56 x 10(6) and 1.22 x 10(6) residual WBCs). HTLV was not detected in filtered RBCs from the blood donor with the highest percentage of HTLV-I-infected PBMCs (9%). CONCLUSION: This study confirms that HTLV-I-infected cells can be detected in filtered blood cell components and shows that optimal leukoreduction is critical for HTLV-I removal.


Subject(s)
Blood Cells/virology , Blood Donors , Deltaretrovirus Infections/virology , Human T-lymphotropic virus 1/isolation & purification , Leukapheresis , Viral Load , Blood Platelets/virology , Computer Systems , DNA, Viral/analysis , Deltaretrovirus Infections/blood , Erythrocytes/virology , Filtration , Flow Cytometry , Human T-lymphotropic virus 1/genetics , Humans , Monocytes/virology , Polymerase Chain Reaction , Quality Control , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL