Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Appl Microbiol ; 132(6): 4501-4516, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35278017

ABSTRACT

AIM: This study was conducted to test the ability of a carvacrol-based formulation (Phodé, France) to decrease the C. jejuni caecal load in inoculated broiler chickens and to study the impact of the C. jejuni inoculation alone or combined with the product, on the caecal microbiota. METHODS AND RESULTS: On day 1, chickens were either fed a control feed or the same diet supplemented with a carvacrol-based product. On day 21, the carvacrol-supplemented chickens and half of the non-supplemented chickens were inoculated with C. jejuni (108  CFU). Quantitative PCR was used to quantify C. jejuni in chicken caecal samples and 16S rRNA gene sequencing was carried out at 25, 31 and 35 days of age. A significant decrease of 1.4 log of the C. jejuni caecal load was observed in 35-day-old chickens supplemented with the product, compared to the inoculated and unsupplemented group (p < 0.05). The inoculation with C. jejuni significantly increased the population richness, Shannon and Simpson diversity and altered beta-diversity. Compared to the control group, the C. jejuni inoculation causes significant changes in the microbiota. The carvacrol-based product associated with C. jejuni inoculation increased the diversity and strongly modified the structure of the microbial community. Functional analysis by 16S rRNA gene-based predictions further revealed that the product up-regulated the pathways involved in the antimicrobial synthesis, which could explain its shaping effect on the caecal microbiota. CONCLUSIONS: Our study confirmed the impairment of the caecal bacterial community after inoculation and demonstrated the ability of the product to reduce the C. jejuni load in chickens. Further investigations are needed to better understand the mode of action of this product to promote the installation of a beneficial microbiota to its host. SIGNIFICANCE AND IMPACT OF THE STUDY: Results suggested that this product could be promising to control C. jejuni contamination of broilers.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Microbiota , Poultry Diseases , Animals , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Cecum/microbiology , Chickens/microbiology , Cymenes , Poultry Diseases/drug therapy , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , RNA, Ribosomal, 16S/genetics
2.
mSystems ; 7(3): e0024322, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35674393

ABSTRACT

In mammals, the introduction of solid food is pivotal for the establishment of the gut microbiota. However, the effects of the first food consumed on long-term microbiota trajectory and host response are still largely unknown. This study aimed to investigate the influences of (i) the timing of first solid food ingestion and (ii) the consumption of plant polysaccharides on bacterial community dynamics and host physiology using a rabbit model. To modulate the first exposure to solid nutrients, solid food was provided to suckling rabbits from two different time points (3 or 15 days of age). In parallel, food type was modulated with the provision of diets differing in carbohydrate content throughout life: the food either was formulated with a high proportion of rapidly fermentable fibers (RFF) or was starch-enriched. We found that access to solid food as of 3 days of age accelerated the gut microbiota maturation. Our data revealed differential effects according to the digestive segment: precocious solid food ingestion influenced to a greater extent the development of bacterial communities of the appendix vermiformis, whereas life course polysaccharides ingestion had marked effects on the cecal microbiota. Greater ingestion of RFF was assumed to promote pectin degradation as revealed by metabolomics analysis. However, transcriptomic and phenotypic host responses remained moderately affected by experimental treatments, suggesting little outcomes of the observed microbiome modulations on healthy subjects. In conclusion, our work highlighted the timing of solid food introduction and plant polysaccharides ingestion as two different tools to modulate microbiota implantation and functionality. IMPORTANCE Our study was designed to gain a better understanding of how different feeding patterns affect the dynamics of gut microbiomes and microbe-host interactions. This research showed that the timing of solid food introduction is a key component of the gut microbiota shaping in early developmental stages, though with lower impact on settled gut microbiota profiles in older individuals. This study also provided in-depth analysis of dietary polysaccharide effects on intestinal microbiota. The type of plant polysaccharides reaching the gut through the lifetime was described as an important modulator of the cecal microbiome and its activity. These findings will contribute to better define the interventions that can be employed for modulating the ecological succession of young mammal gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Rabbits , Bacteria/metabolism , Polysaccharides/pharmacology , Diet , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL