Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain Behav Immun ; 41: 218-31, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24907587

ABSTRACT

Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1ß in the brain by 2-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1ß in the brain.


Subject(s)
Adenosine/toxicity , Anxiety/chemically induced , Brain/metabolism , Caspase 1/physiology , Interleukin-1beta/biosynthesis , Nerve Tissue Proteins/physiology , Receptor, Adenosine A2A/physiology , Adenosine/pharmacology , Amygdala/metabolism , Animals , Anxiety/physiopathology , Carbazoles/pharmacology , Caspase 1/deficiency , Cyclic AMP-Dependent Protein Kinases/physiology , Enzyme Activation/drug effects , Exploratory Behavior/drug effects , Feeding Behavior/drug effects , Glyburide/pharmacology , Interleukin-1beta/genetics , Interleukin-1beta/physiology , Ion Transport/drug effects , KATP Channels/physiology , Locomotion/drug effects , Maze Learning/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/deficiency , Potassium/metabolism , Pyrroles/pharmacology , Receptor, Adenosine A2A/deficiency , Receptor, Adenosine A2A/drug effects , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/physiology
2.
J Neurosci ; 32(40): 13945-55, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-23035103

ABSTRACT

After hypoxia, a critical adverse outcome is the inability to create new memories. How anterograde amnesia develops or resolves remains elusive, but a link to brain-based IL-1 is suggested due to the vital role of IL-1 in both learning and brain injury. We examined memory formation in mice exposed to acute hypoxia. After reoxygenation, memory recall recovered faster than memory formation, impacting novel object recognition and cued fear conditioning but not spatially cued Y-maze performance. The ability of mice to form new memories after hypoxia/reoxygenation was accelerated in IL-1 receptor 1 knockout (IL-1R1 KO) mice, in mice receiving IL-1 receptor antagonist (IL-1RA), and in mice given the caspase 1 inhibitor Ac-YVAD-CMK. Mechanistically, hypoxia/reoxygenation more than doubled caspase 1 activity in the brain, which was localized to the amygdala compared to the hippocampus. This reoxygenation-dependent activation of caspase 1 was prevented by broad-spectrum adenosine receptor (AR) antagonism with caffeine and by targeted A1/A2A AR antagonism with 8-cyclopentyl-1,3-dipropylxanthine plus 3,7-dimethyl-1-propargylxanthine. Additionally, perfusion of adenosine activated caspase 1 in the brain, while caffeine blocked this action by adenosine. Finally, resolution of anterograde amnesia was improved by both caffeine and by targeted A1/A2A AR antagonism. These findings indicate that amygdala-based anterograde amnesia after hypoxia/reoxygenation is sustained by IL-1ß generated through adenosine-dependent activation of caspase 1 after reoxygenation.


Subject(s)
Adenosine/physiology , Amnesia, Anterograde/enzymology , Amygdala/physiology , Caspase 1/physiology , Hypoxia, Brain/complications , Adenosine/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Amnesia, Anterograde/etiology , Amnesia, Anterograde/physiopathology , Amygdala/drug effects , Amygdala/enzymology , Animals , Caffeine/pharmacology , Caspase 1/drug effects , Caspase Inhibitors/pharmacology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Cues , Enzyme Activation , Fear/drug effects , Fear/physiology , Hypoxia, Brain/physiopathology , Interleukin 1 Receptor Antagonist Protein/pharmacology , MAP Kinase Signaling System , Male , Maze Learning/drug effects , Maze Learning/physiology , Mental Recall , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/metabolism , Oxygen/pharmacology , Receptors, Interleukin-1 Type I/deficiency , Receptors, Purinergic P1/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Theobromine/analogs & derivatives , Theobromine/pharmacology , Xanthines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL