Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Transl Med ; 22(1): 190, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38383458

ABSTRACT

BACKGROUND: Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC. METHODS: Participants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials. RESULTS: A total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression-based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1. CONCLUSIONS: This DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy. TRIAL REGISTRATION: CheckMate 026; NCT02041533, registered January 22, 2014. CheckMate 227; NCT02477826, registered June 23, 2015.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/pathology , B7-H1 Antigen , Biomarkers, Tumor
2.
Cell Rep ; 28(4): 938-948.e6, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31340155

ABSTRACT

The phenotypic effect of perturbing a gene's activity depends on the activity level of other genes, reflecting the notion that phenotypes are emergent properties of a network of functionally interacting genes. In the context of cancer, contemporary investigations have primarily focused on just one type of functional relationship between two genes-synthetic lethality (SL). Here, we define the more general concept of "survival-associated pairwise gene expression states" (SPAGEs) as gene pairs whose joint expression levels are associated with survival. We describe a data-driven approach called SPAGE-finder that when applied to The Cancer Genome Atlas (TCGA) data identified 71,946 SPAGEs spanning 12 distinct types, only a minority of which are SLs. The detected SPAGEs explain cancer driver genes' tissue specificity and differences in patients' response to drugs and stratify breast cancer tumors into refined subtypes. These results expand the scope of cancer SPAGEs and lay a conceptual basis for future studies of SPAGEs and their translational applications.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Synthetic Lethal Mutations/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinogenesis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genes, Neoplasm , Humans , Neoplasms/drug therapy , Organ Specificity/genetics , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL