Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Value Health ; 27(5): 585-597, 2024 May.
Article in English | MEDLINE | ID: mdl-38401794

ABSTRACT

OBJECTIVES: This research aimed to develop best-practice recommendations for identifying the "standard of care" (SoC) and integrate it when it is the comparator in diagnostic economic models (SoC comparator). METHODS: A multi-methods approach comprising 2 pragmatic literature reviews and 9 expert interviews was used. Experts rated their agreement with draft recommendations based on the authors' analysis of the reviews. These were refined iteratively to produce final recommendations. RESULTS: Fourteen best-practice recommendations are provided. Care pathway mapping (using quantitative, qualitative, or mixed-methods approaches) should be used for identifying the SoC comparator. Guidelines analysis can be integrated with expert opinion to identify pathway variability and discrepancies from clinical practice. For integrating the SoC comparator into the model, recommendations around structure, input sourcing, data aggregation and reporting, input uncertainty, and model variability are presented. For example, modelers should consider that the reference standard is not synonymous with the SoC, and the SoC may not be the only comparator. The comparator limitations should be discussed with clinical experts, but elicitation of its diagnostic accuracy is not recommended. Probabilistic sensitivity analysis is recommended when evaluating the overall input uncertainty, and deterministic sensitivity analysis is useful when there is high model uncertainty or SoC variability. Consensus could not be reached for some topics (eg, the role of real-world data, model averaging, and alternative model structures), but the reported discussions provide points for consideration. CONCLUSIONS: To our knowledge, this is the first guidance to support modelers when identifying and operationalizing the SoC comparator in diagnostic cost-effectiveness models.


Subject(s)
Cost-Benefit Analysis , Models, Economic , Standard of Care , Humans , Interviews as Topic
2.
BJOG ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556698

ABSTRACT

OBJECTIVE: To investigate psychological correlates in women referred with suspected ovarian cancer via the fast-track pathway, explore how anxiety and distress levels change at 12 months post-testing, and report cancer conversion rates by age and referral pathway. DESIGN: Single-arm prospective cohort study. SETTING: Multicentre. Secondary care including outpatient clinics and emergency admissions. POPULATION: A cohort of 2596 newly presenting symptomatic women with a raised CA125 level, abnormal imaging or both. METHODS: Women completed anxiety and distress questionnaires at recruitment and at 12 months for those who had not undergone surgery or a biopsy within 3 months of recruitment. MAIN OUTCOME MEASURES: Anxiety and distress levels measured using a six-item short form of the State-Trait Anxiety Inventory (STAI-6) and the Impact of Event Scale - Revised (IES-r) questionnaire. Ovarian cancer (OC) conversion rates by age, menopausal status and referral pathway. RESULTS: Overall, 1355/2596 (52.1%) and 1781/2596 (68.6%) experienced moderate-to-severe distress and anxiety, respectively, at recruitment. Younger age and emergency presentations had higher distress levels. The clinical category for anxiety and distress remained unchanged/worsened in 76% of respondents at 12 months, despite a non-cancer diagnosis. The OC rates by age were 1.6% (95% CI 0.5%-5.9%) for age <40 years and 10.9% (95% CI 8.7%-13.6%) for age ≥40 years. In women referred through fast-track pathways, 3.3% (95% CI 1.9%-5.7%) of pre- and 18.5% (95% CI 16.1%-21.0%) of postmenopausal women were diagnosed with OC. CONCLUSIONS: Women undergoing diagnostic testing display severe anxiety and distress. Younger women are especially vulnerable and should be targeted for support. Women under the age of 40 years have low conversion rates and we advocate reducing testing in this group to reduce the harms of testing.

3.
Int J Technol Assess Health Care ; 39(1): e14, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36803886

ABSTRACT

OBJECTIVES: To identify which international health technology assessment (HTA) agencies are undertaking evaluations of medical tests, summarize commonalities and differences in methodological approach, and highlight examples of good practice. METHODS: A methodological review incorporating: systematic identification of HTA guidance documents mentioning evaluation of tests; identification of key contributing organizations and abstraction of approaches to all essential HTA steps; summary of similarities and differences between organizations; and identification of important emergent themes which define the current state of the art and frontiers where further development is needed. RESULTS: Seven key organizations were identified from 216 screened. The main themes were: elucidation of claims of test benefits; attitude to direct and indirect evidence of clinical effectiveness (including evidence linkage); searching; quality assessment; and health economic evaluation. With the exception of dealing with test accuracy data, approaches were largely based on general approaches to HTA with few test-specific modifications. Elucidation of test claims and attitude to direct and indirect evidence are where we identified the biggest dissimilarities in approach. CONCLUSIONS: There is consensus on some aspects of HTA of tests, such as dealing with test accuracy, and examples of good practice which HTA organizations new to test evaluation can emulate. The focus on test accuracy contrasts with universal acknowledgment that it is not a sufficient evidence base for test evaluation. There are frontiers where methodological development is urgently required, notably integrating direct and indirect evidence and standardizing approaches to evidence linkage.


Subject(s)
Attitude , Technology Assessment, Biomedical , Cost-Benefit Analysis , Consensus , International Agencies
4.
Cochrane Database Syst Rev ; 7: CD011964, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35879201

ABSTRACT

BACKGROUND: Ovarian cancer (OC) has the highest case fatality rate of all gynaecological cancers. Diagnostic delays are caused by non-specific symptoms. Existing systematic reviews have not comprehensively covered tests in current practice, not estimated accuracy separately in pre- and postmenopausal women, or used inappropriate meta-analytic methods. OBJECTIVES: To establish the accuracy of combinations of menopausal status, ultrasound scan (USS) and biomarkers for the diagnosis of ovarian cancer in pre- and postmenopausal women and compare the accuracy of different test combinations. SEARCH METHODS: We searched CENTRAL, MEDLINE (Ovid), Embase (Ovid), five other databases and three trial registries from 1991 to 2015 and MEDLINE (Ovid) and Embase (Ovid) form June 2015 to June 2019. We also searched conference proceedings from the European Society of Gynaecological Oncology, International Gynecologic Cancer Society, American Society of Clinical Oncology and Society of Gynecologic Oncology, ZETOC and Conference Proceedings Citation Index (Web of Knowledge). We searched reference lists of included studies and published systematic reviews. SELECTION CRITERIA: We included cross-sectional diagnostic test accuracy studies evaluating single tests or comparing two or more tests, randomised trials comparing two or more tests, and studies validating multivariable models for the diagnosis of OC investigating test combinations, compared with a reference standard of histological confirmation or clinical follow-up in women with a pelvic mass (detected clinically or through USS) suspicious for OC. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data and assessed quality using QUADAS-2. We used the bivariate hierarchical model to indirectly compare tests at commonly reported thresholds in pre- and postmenopausal women separately. We indirectly compared tests across all thresholds and estimated sensitivity at fixed specificities of 80% and 90% by fitting hierarchical summary receiver operating characteristic (HSROC) models in pre- and postmenopausal women separately. MAIN RESULTS: We included 59 studies (32,059 women, 9545 cases of OC). Two tests evaluated the accuracy of a combination of menopausal status and USS findings (IOTA Logistic Regression Model 2 (LR2) and the Assessment of Different NEoplasias in the adneXa model (ADNEX)); one test evaluated the accuracy of a combination of menopausal status, USS findings and serum biomarker CA125 (Risk of Malignancy Index (RMI)); and one test evaluated the accuracy of a combination of menopausal status and two serum biomarkers (CA125 and HE4) (Risk of Ovarian Malignancy Algorithm (ROMA)). Most studies were at high or unclear risk of bias in participant, reference standard, and flow and timing domains. All studies were in hospital settings. Prevalence was 16% (RMI, ROMA), 22% (LR2) and 27% (ADNEX) in premenopausal women and 38% (RMI), 45% (ROMA), 52% (LR2) and 55% (ADNEX) in postmenopausal women. The prevalence of OC in the studies was considerably higher than would be expected in symptomatic women presenting in community-based settings, or in women referred from the community to hospital with a suspicion of OC. Studies were at high or unclear applicability because presenting features were not reported, or USS was performed by experienced ultrasonographers for RMI, LR2 and ADNEX. The higher sensitivity and lower specificity observed in postmenopausal compared to premenopausal women across all index tests and at all thresholds may reflect highly selected patient cohorts in the included studies. In premenopausal women, ROMA at a threshold of 13.1 (± 2), LR2 at a threshold to achieve a post-test probability of OC of 10% and ADNEX (post-test probability 10%) demonstrated a higher sensitivity (ROMA: 77.4%, 95% CI 72.7% to 81.5%; LR2: 83.3%, 95% CI 74.7% to 89.5%; ADNEX: 95.5%, 95% CI 91.0% to 97.8%) compared to RMI (57.2%, 95% CI 50.3% to 63.8%). The specificity of ROMA and ADNEX were lower in premenopausal women (ROMA: 84.3%, 95% CI 81.2% to 87.0%; ADNEX: 77.8%, 95% CI 67.4% to 85.5%) compared to RMI 92.5% (95% CI 90.3% to 94.2%). The specificity of LR2 was comparable to RMI (90.4%, 95% CI 84.6% to 94.1%). In postmenopausal women, ROMA at a threshold of 27.7 (± 2), LR2 (post-test probability 10%) and ADNEX (post-test probability 10%) demonstrated a higher sensitivity (ROMA: 90.3%, 95% CI 87.5% to 92.6%; LR2: 94.8%, 95% CI 92.3% to 96.6%; ADNEX: 97.6%, 95% CI 95.6% to 98.7%) compared to RMI (78.4%, 95% CI 74.6% to 81.7%). Specificity of ROMA at a threshold of 27.7 (± 2) (81.5, 95% CI 76.5% to 85.5%) was comparable to RMI (85.4%, 95% CI 82.0% to 88.2%), whereas for LR2 (post-test probability 10%) and ADNEX (post-test probability 10%) specificity was lower (LR2: 60.6%, 95% CI 50.5% to 69.9%; ADNEX: 55.0%, 95% CI 42.8% to 66.6%). AUTHORS' CONCLUSIONS: In specialist healthcare settings in both premenopausal and postmenopausal women, RMI has poor sensitivity. In premenopausal women, ROMA, LR2 and ADNEX offer better sensitivity (fewer missed cancers), but for ROMA and ADNEX this is off-set by a decrease in specificity and increase in false positives. In postmenopausal women, ROMA demonstrates a higher sensitivity and comparable specificity to RMI. ADNEX has the highest sensitivity in postmenopausal women, but reduced specificity. The prevalence of OC in included studies is representative of a highly selected referred population, rather than a population in whom referral is being considered. The comparative accuracy of tests observed here may not be transferable to non-specialist settings. Ultimately health systems need to balance accuracy and resource implications to identify the most suitable test.


Subject(s)
Ovarian Neoplasms , Biomarkers , Carcinoma, Ovarian Epithelial , Cross-Sectional Studies , Female , Humans , Menopause , Ovarian Neoplasms/diagnostic imaging , Sensitivity and Specificity
5.
Cochrane Database Syst Rev ; 5: CD013665, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35593186

ABSTRACT

BACKGROUND: COVID-19 illness is highly variable, ranging from infection with no symptoms through to pneumonia and life-threatening consequences. Symptoms such as fever, cough, or loss of sense of smell (anosmia) or taste (ageusia), can help flag early on if the disease is present. Such information could be used either to rule out COVID-19 disease, or to identify people who need to go for COVID-19 diagnostic tests. This is the second update of this review, which was first published in 2020. OBJECTIVES: To assess the diagnostic accuracy of signs and symptoms to determine if a person presenting in primary care or to hospital outpatient settings, such as the emergency department or dedicated COVID-19 clinics, has COVID-19. SEARCH METHODS: We undertook electronic searches up to 10 June 2021 in the University of Bern living search database. In addition, we checked repositories of COVID-19 publications. We used artificial intelligence text analysis to conduct an initial classification of documents. We did not apply any language restrictions. SELECTION CRITERIA: Studies were eligible if they included people with clinically suspected COVID-19, or recruited known cases with COVID-19 and also controls without COVID-19 from a single-gate cohort. Studies were eligible when they recruited people presenting to primary care or hospital outpatient settings. Studies that included people who contracted SARS-CoV-2 infection while admitted to hospital were not eligible. The minimum eligible sample size of studies was 10 participants. All signs and symptoms were eligible for this review, including individual signs and symptoms or combinations. We accepted a range of reference standards. DATA COLLECTION AND ANALYSIS: Pairs of review authors independently selected all studies, at both title and abstract, and full-text stage. They resolved any disagreements by discussion with a third review author. Two review authors independently extracted data and assessed risk of bias using the QUADAS-2 checklist, and resolved disagreements by discussion with a third review author. Analyses were restricted to prospective studies only. We presented sensitivity and specificity in paired forest plots, in receiver operating characteristic (ROC) space and in dumbbell plots. We estimated summary parameters using a bivariate random-effects meta-analysis whenever five or more primary prospective studies were available, and whenever heterogeneity across studies was deemed acceptable. MAIN RESULTS: We identified 90 studies; for this update we focused on the results of 42 prospective studies with 52,608 participants. Prevalence of COVID-19 disease varied from 3.7% to 60.6% with a median of 27.4%. Thirty-five studies were set in emergency departments or outpatient test centres (46,878 participants), three in primary care settings (1230 participants), two in a mixed population of in- and outpatients in a paediatric hospital setting (493 participants), and two overlapping studies in nursing homes (4007 participants). The studies did not clearly distinguish mild COVID-19 disease from COVID-19 pneumonia, so we present the results for both conditions together. Twelve studies had a high risk of bias for selection of participants because they used a high level of preselection to decide whether reverse transcription polymerase chain reaction (RT-PCR) testing was needed, or because they enrolled a non-consecutive sample, or because they excluded individuals while they were part of the study base. We rated 36 of the 42 studies as high risk of bias for the index tests because there was little or no detail on how, by whom and when, the symptoms were measured. For most studies, eligibility for testing was dependent on the local case definition and testing criteria that were in effect at the time of the study, meaning most people who were included in studies had already been referred to health services based on the symptoms that we are evaluating in this review. The applicability of the results of this review iteration improved in comparison with the previous reviews. This version has more studies of people presenting to ambulatory settings, which is where the majority of assessments for COVID-19 take place. Only three studies presented any data on children separately, and only one focused specifically on older adults. We found data on 96 symptoms or combinations of signs and symptoms. Evidence on individual signs as diagnostic tests was rarely reported, so this review reports mainly on the diagnostic value of symptoms. Results were highly variable across studies. Most had very low sensitivity and high specificity. RT-PCR was the most often used reference standard (40/42 studies). Only cough (11 studies) had a summary sensitivity above 50% (62.4%, 95% CI 50.6% to 72.9%)); its specificity was low (45.4%, 95% CI 33.5% to 57.9%)). Presence of fever had a sensitivity of 37.6% (95% CI 23.4% to 54.3%) and a specificity of 75.2% (95% CI 56.3% to 87.8%). The summary positive likelihood ratio of cough was 1.14 (95% CI 1.04 to 1.25) and that of fever 1.52 (95% CI 1.10 to 2.10). Sore throat had a summary positive likelihood ratio of 0.814 (95% CI 0.714 to 0.929), which means that its presence increases the probability of having an infectious disease other than COVID-19. Dyspnoea (12 studies) and fatigue (8 studies) had a sensitivity of 23.3% (95% CI 16.4% to 31.9%) and 40.2% (95% CI 19.4% to 65.1%) respectively. Their specificity was 75.7% (95% CI 65.2% to 83.9%) and 73.6% (95% CI 48.4% to 89.3%). The summary positive likelihood ratio of dyspnoea was 0.96 (95% CI 0.83 to 1.11) and that of fatigue 1.52 (95% CI 1.21 to 1.91), which means that the presence of fatigue slightly increases the probability of having COVID-19. Anosmia alone (7 studies), ageusia alone (5 studies), and anosmia or ageusia (6 studies) had summary sensitivities below 50% but summary specificities over 90%. Anosmia had a summary sensitivity of 26.4% (95% CI 13.8% to 44.6%) and a specificity of 94.2% (95% CI 90.6% to 96.5%). Ageusia had a summary sensitivity of 23.2% (95% CI 10.6% to 43.3%) and a specificity of 92.6% (95% CI 83.1% to 97.0%). Anosmia or ageusia had a summary sensitivity of 39.2% (95% CI 26.5% to 53.6%) and a specificity of 92.1% (95% CI 84.5% to 96.2%). The summary positive likelihood ratios of anosmia alone and anosmia or ageusia were 4.55 (95% CI 3.46 to 5.97) and 4.99 (95% CI 3.22 to 7.75) respectively, which is just below our arbitrary definition of a 'red flag', that is, a positive likelihood ratio of at least 5. The summary positive likelihood ratio of ageusia alone was 3.14 (95% CI 1.79 to 5.51). Twenty-four studies assessed combinations of different signs and symptoms, mostly combining olfactory symptoms. By combining symptoms with other information such as contact or travel history, age, gender, and a local recent case detection rate, some multivariable prediction scores reached a sensitivity as high as 90%. AUTHORS' CONCLUSIONS: Most individual symptoms included in this review have poor diagnostic accuracy. Neither absence nor presence of symptoms are accurate enough to rule in or rule out the disease. The presence of anosmia or ageusia may be useful as a red flag for the presence of COVID-19. The presence of cough also supports further testing. There is currently no evidence to support further testing with PCR in any individuals presenting only with upper respiratory symptoms such as sore throat, coryza or rhinorrhoea. Combinations of symptoms with other readily available information such as contact or travel history, or the local recent case detection rate may prove more useful and should be further investigated in an unselected population presenting to primary care or hospital outpatient settings. The diagnostic accuracy of symptoms for COVID-19 is moderate to low and any testing strategy using symptoms as selection mechanism will result in both large numbers of missed cases and large numbers of people requiring testing. Which one of these is minimised, is determined by the goal of COVID-19 testing strategies, that is, controlling the epidemic by isolating every possible case versus identifying those with clinically important disease so that they can be monitored or treated to optimise their prognosis. The former will require a testing strategy that uses very few symptoms as entry criterion for testing, the latter could focus on more specific symptoms such as fever and anosmia.


Subject(s)
Ageusia , COVID-19 , Pharyngitis , Aged , Ageusia/complications , Anosmia/diagnosis , Anosmia/etiology , Artificial Intelligence , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Child , Cough/etiology , Dyspnea , Fatigue/etiology , Fever/diagnosis , Fever/etiology , Hospitals , Humans , Outpatients , Primary Health Care , Prospective Studies , SARS-CoV-2 , Sensitivity and Specificity
6.
Cochrane Database Syst Rev ; 7: CD013705, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35866452

ABSTRACT

BACKGROUND: Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES: To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS: We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS: We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS: We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Humans , Pandemics , Point-of-Care Systems , SARS-CoV-2 , Sensitivity and Specificity
7.
Cochrane Database Syst Rev ; 11: CD013652, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36394900

ABSTRACT

BACKGROUND: The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. OBJECTIVES: To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. SEARCH METHODS: The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. SELECTION CRITERIA: We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). DATA COLLECTION AND ANALYSIS: We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. MAIN RESULTS: We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. AUTHORS' CONCLUSIONS: Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Antibodies, Viral , Immunoglobulin G , COVID-19 Vaccines , Pandemics , Seroepidemiologic Studies , Immunoglobulin M
8.
BMC Public Health ; 22(1): 1751, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36109776

ABSTRACT

BACKGROUND: Tests to predict the development of chronic diseases in those with a family history of the disease are becoming increasingly available and can identify those who may benefit most from preventive interventions. It is important to understand the acceptability of these predictive approaches to inform the development of tools to support decision making. Whilst data are lacking for many diseases, data are available for ischemic heart disease (IHD). Therefore, this study investigates the willingness of those with a family history of IHD to take a predictive test, and the effect of the test results on risk-related behaviours. METHOD: Medline, EMBASE, PsycINFO, LILACS and grey literature were searched. Primary research, including adult participants with a family history of IHD, and assessing a predictive test were included. Qualitative and quantitative outcomes measuring willingness to take a predictive test and the effect of test results on risk-related behaviours were also included. Data concerning study aims, participants, design, predictive test, intervention and findings were extracted. Study quality was assessed using the Standard Quality Assessment Criteria for Evaluating Research Papers from a Variety of Fields and a narrative synthesis undertaken. RESULTS: Five quantitative and two qualitative studies were included. These were conducted in the Netherlands (n = 1), Australia (n = 1), USA (n = 1) and the UK (n = 4). Methodological quality ranged from moderate to good. Three studies found that most relatives were willing to take a predictive test, reporting family history (n = 2) and general practitioner (GP) recommendation (n = 1) as determinants of interest. Studies assessing the effect of test results on behavioural intentions (n = 2) found increased intentions to engage in physical activity and smoking cessation, but not healthy eating in those at increased risk of developing IHD. In studies examining actual behaviour change (n = 2) most participants reported engaging in at least one preventive behaviour, particularly medication adherence. CONCLUSION: The results suggests that predictive approaches are acceptable to those with a family history of IHD and have a positive impact on health behaviours. Further studies are needed to provide a comprehensive understanding of predictive approaches in IHD and other chronic conditions.


Subject(s)
Myocardial Ischemia , Smoking Cessation , Adult , Humans , Intention , Medical History Taking , Medication Adherence , Myocardial Ischemia/diagnosis
9.
Ann Intern Med ; 174(11): 1592-1599, 2021 11.
Article in English | MEDLINE | ID: mdl-34698503

ABSTRACT

Comparative diagnostic test accuracy studies assess and compare the accuracy of 2 or more tests in the same study. Although these studies have the potential to yield reliable evidence regarding comparative accuracy, shortcomings in the design, conduct, and analysis may bias their results. The currently recommended quality assessment tool for diagnostic test accuracy studies, QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2), is not designed for the assessment of test comparisons. The QUADAS-C (Quality Assessment of Diagnostic Accuracy Studies-Comparative) tool was developed as an extension of QUADAS-2 to assess the risk of bias in comparative diagnostic test accuracy studies. Through a 4-round Delphi study involving 24 international experts in test evaluation and a face-to-face consensus meeting, an initial version of the tool was developed that was revised and finalized following a pilot study among potential users. The QUADAS-C tool retains the same 4-domain structure of QUADAS-2 (Patient Selection, Index Test, Reference Standard, and Flow and Timing) and comprises additional questions to each QUADAS-2 domain. A risk-of-bias judgment for comparative accuracy requires a risk-of-bias judgment for the accuracy of each test (resulting from QUADAS-2) and additional criteria specific to test comparisons. Examples of such additional criteria include whether participants either received all index tests or were randomly assigned to index tests, and whether index tests were interpreted with blinding to the results of other index tests. The QUADAS-C tool will be useful for systematic reviews of diagnostic test accuracy addressing comparative questions. Furthermore, researchers may use this tool to identify and avoid risk of bias when designing a comparative diagnostic test accuracy study.


Subject(s)
Bias , Diagnosis , Quality Assurance, Health Care , Review Literature as Topic , Surveys and Questionnaires , Evidence-Based Medicine , Humans
10.
Cochrane Database Syst Rev ; 2: CD013665, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33620086

ABSTRACT

BACKGROUND: The clinical implications of SARS-CoV-2 infection are highly variable. Some people with SARS-CoV-2 infection remain asymptomatic, whilst the infection can cause mild to moderate COVID-19 and COVID-19 pneumonia in others. This can lead to some people requiring intensive care support and, in some cases, to death, especially in older adults. Symptoms such as fever, cough, or loss of smell or taste, and signs such as oxygen saturation are the first and most readily available diagnostic information. Such information could be used to either rule out COVID-19, or select patients for further testing. This is an update of this review, the first version of which published in July 2020. OBJECTIVES: To assess the diagnostic accuracy of signs and symptoms to determine if a person presenting in primary care or to hospital outpatient settings, such as the emergency department or dedicated COVID-19 clinics, has COVID-19. SEARCH METHODS: For this review iteration we undertook electronic searches up to 15 July 2020 in the Cochrane COVID-19 Study Register and the University of Bern living search database. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. SELECTION CRITERIA: Studies were eligible if they included patients with clinically suspected COVID-19, or if they recruited known cases with COVID-19 and controls without COVID-19. Studies were eligible when they recruited patients presenting to primary care or hospital outpatient settings. Studies in hospitalised patients were only included if symptoms and signs were recorded on admission or at presentation. Studies including patients who contracted SARS-CoV-2 infection while admitted to hospital were not eligible. The minimum eligible sample size of studies was 10 participants. All signs and symptoms were eligible for this review, including individual signs and symptoms or combinations. We accepted a range of reference standards. DATA COLLECTION AND ANALYSIS: Pairs of review authors independently selected all studies, at both title and abstract stage and full-text stage. They resolved any disagreements by discussion with a third review author. Two review authors independently extracted data and resolved disagreements by discussion with a third review author. Two review authors independently assessed risk of bias using the Quality Assessment tool for Diagnostic Accuracy Studies (QUADAS-2) checklist. We presented sensitivity and specificity in paired forest plots, in receiver operating characteristic space and in dumbbell plots. We estimated summary parameters using a bivariate random-effects meta-analysis whenever five or more primary studies were available, and whenever heterogeneity across studies was deemed acceptable. MAIN RESULTS: We identified 44 studies including 26,884 participants in total. Prevalence of COVID-19 varied from 3% to 71% with a median of 21%. There were three studies from primary care settings (1824 participants), nine studies from outpatient testing centres (10,717 participants), 12 studies performed in hospital outpatient wards (5061 participants), seven studies in hospitalised patients (1048 participants), 10 studies in the emergency department (3173 participants), and three studies in which the setting was not specified (5061 participants). The studies did not clearly distinguish mild from severe COVID-19, so we present the results for all disease severities together. Fifteen studies had a high risk of bias for selection of participants because inclusion in the studies depended on the applicable testing and referral protocols, which included many of the signs and symptoms under study in this review. This may have especially influenced the sensitivity of those features used in referral protocols, such as fever and cough. Five studies only included participants with pneumonia on imaging, suggesting that this is a highly selected population. In an additional 12 studies, we were unable to assess the risk for selection bias. This makes it very difficult to judge the validity of the diagnostic accuracy of the signs and symptoms from these included studies. The applicability of the results of this review update improved in comparison with the original review. A greater proportion of studies included participants who presented to outpatient settings, which is where the majority of clinical assessments for COVID-19 take place. However, still none of the studies presented any data on children separately, and only one focused specifically on older adults. We found data on 84 signs and symptoms. Results were highly variable across studies. Most had very low sensitivity and high specificity. Only cough (25 studies) and fever (7 studies) had a pooled sensitivity of at least 50% but specificities were moderate to low. Cough had a sensitivity of 67.4% (95% confidence interval (CI) 59.8% to 74.1%) and specificity of 35.0% (95% CI 28.7% to 41.9%). Fever had a sensitivity of 53.8% (95% CI 35.0% to 71.7%) and a specificity of 67.4% (95% CI 53.3% to 78.9%). The pooled positive likelihood ratio of cough was only 1.04 (95% CI 0.97 to 1.11) and that of fever 1.65 (95% CI 1.41 to 1.93). Anosmia alone (11 studies), ageusia alone (6 studies), and anosmia or ageusia (6 studies) had sensitivities below 50% but specificities over 90%. Anosmia had a pooled sensitivity of 28.0% (95% CI 17.7% to 41.3%) and a specificity of 93.4% (95% CI 88.3% to 96.4%). Ageusia had a pooled sensitivity of 24.8% (95% CI 12.4% to 43.5%) and a specificity of 91.4% (95% CI 81.3% to 96.3%). Anosmia or ageusia had a pooled sensitivity of 41.0% (95% CI 27.0% to 56.6%) and a specificity of 90.5% (95% CI 81.2% to 95.4%). The pooled positive likelihood ratios of anosmia alone and anosmia or ageusia were 4.25 (95% CI 3.17 to 5.71) and 4.31 (95% CI 3.00 to 6.18) respectively, which is just below our arbitrary definition of a 'red flag', that is, a positive likelihood ratio of at least 5. The pooled positive likelihood ratio of ageusia alone was only 2.88 (95% CI 2.02 to 4.09). Only two studies assessed combinations of different signs and symptoms, mostly combining fever and cough with other symptoms. These combinations had a specificity above 80%, but at the cost of very low sensitivity (< 30%). AUTHORS' CONCLUSIONS: The majority of individual signs and symptoms included in this review appear to have very poor diagnostic accuracy, although this should be interpreted in the context of selection bias and heterogeneity between studies. Based on currently available data, neither absence nor presence of signs or symptoms are accurate enough to rule in or rule out COVID-19. The presence of anosmia or ageusia may be useful as a red flag for COVID-19. The presence of fever or cough, given their high sensitivities, may also be useful to identify people for further testing. Prospective studies in an unselected population presenting to primary care or hospital outpatient settings, examining combinations of signs and symptoms to evaluate the syndromic presentation of COVID-19, are still urgently needed. Results from such studies could inform subsequent management decisions.


Subject(s)
Ambulatory Care , COVID-19/diagnosis , Primary Health Care , SARS-CoV-2 , Symptom Assessment , Ageusia/diagnosis , Ageusia/etiology , Anosmia/diagnosis , Anosmia/etiology , Arthralgia/diagnosis , Arthralgia/etiology , Bias , COVID-19/complications , COVID-19/epidemiology , Cough/diagnosis , Cough/etiology , Diarrhea/diagnosis , Diarrhea/etiology , Dyspnea/diagnosis , Dyspnea/etiology , Fatigue/diagnosis , Fatigue/etiology , Fever/diagnosis , Fever/etiology , Headache/diagnosis , Headache/etiology , Humans , Myalgia/diagnosis , Myalgia/etiology , Outpatient Clinics, Hospital/statistics & numerical data , Pandemics , Physical Examination , Selection Bias , Symptom Assessment/classification , Symptom Assessment/statistics & numerical data
11.
Cochrane Database Syst Rev ; 3: CD013705, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33760236

ABSTRACT

BACKGROUND: Accurate rapid diagnostic tests for SARS-CoV-2 infection could contribute to clinical and public health strategies to manage the COVID-19 pandemic. Point-of-care antigen and molecular tests to detect current infection could increase access to testing and early confirmation of cases, and expediate clinical and public health management decisions that may reduce transmission. OBJECTIVES: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. SEARCH METHODS: Electronic searches of the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) were undertaken on 30 Sept 2020. We checked repositories of COVID-19 publications and included independent evaluations from national reference laboratories, the Foundation for Innovative New Diagnostics and the Diagnostics Global Health website to 16 Nov 2020. We did not apply language restrictions. SELECTION CRITERIA: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results within two hours of sample collection). We included all reference standards that define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established diagnostic criteria). DATA COLLECTION AND ANALYSIS: Studies were screened independently in duplicate with disagreements resolved by discussion with a third author. Study characteristics were extracted by one author and checked by a second; extraction of study results and assessments of risk of bias and applicability (made using the QUADAS-2 tool) were undertaken independently in duplicate. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and pooled data using the bivariate model separately for antigen and molecular-based tests. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS: Seventy-eight study cohorts were included (described in 64 study reports, including 20 pre-prints), reporting results for 24,087 samples (7,415 with confirmed SARS-CoV-2). Studies were mainly from Europe (n = 39) or North America (n = 20), and evaluated 16 antigen and five molecular assays. We considered risk of bias to be high in 29 (50%) studies because of participant selection; in 66 (85%) because of weaknesses in the reference standard for absence of infection; and in 29 (45%) for participant flow and timing. Studies of antigen tests were of a higher methodological quality compared to studies of molecular tests, particularly regarding the risk of bias for participant selection and the index test. Characteristics of participants in 35 (45%) studies differed from those in whom the test was intended to be used and the delivery of the index test in 39 (50%) studies differed from the way in which the test was intended to be used. Nearly all studies (97%) defined the presence or absence of SARS-CoV-2 based on a single RT-PCR result, and none included participants meeting case definitions for probable COVID-19. Antigen tests Forty-eight studies reported 58 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies. There were differences between symptomatic (72.0%, 95% CI 63.7% to 79.0%; 37 evaluations; 15530 samples, 4410 cases) and asymptomatic participants (58.1%, 95% CI 40.2% to 74.1%; 12 evaluations; 1581 samples, 295 cases). Average sensitivity was higher in the first week after symptom onset (78.3%, 95% CI 71.1% to 84.1%; 26 evaluations; 5769 samples, 2320 cases) than in the second week of symptoms (51.0%, 95% CI 40.8% to 61.0%; 22 evaluations; 935 samples, 692 cases). Sensitivity was high in those with cycle threshold (Ct) values on PCR ≤25 (94.5%, 95% CI 91.0% to 96.7%; 36 evaluations; 2613 cases) compared to those with Ct values >25 (40.7%, 95% CI 31.8% to 50.3%; 36 evaluations; 2632 cases). Sensitivity varied between brands. Using data from instructions for use (IFU) compliant evaluations in symptomatic participants, summary sensitivities ranged from 34.1% (95% CI 29.7% to 38.8%; Coris Bioconcept) to 88.1% (95% CI 84.2% to 91.1%; SD Biosensor STANDARD Q). Average specificities were high in symptomatic and asymptomatic participants, and for most brands (overall summary specificity 99.6%, 95% CI 99.0% to 99.8%). At 5% prevalence using data for the most sensitive assays in symptomatic people (SD Biosensor STANDARD Q and Abbott Panbio), positive predictive values (PPVs) of 84% to 90% mean that between 1 in 10 and 1 in 6 positive results will be a false positive, and between 1 in 4 and 1 in 8 cases will be missed. At 0.5% prevalence applying the same tests in asymptomatic people would result in PPVs of 11% to 28% meaning that between 7 in 10 and 9 in 10 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. No studies assessed the accuracy of repeated lateral flow testing or self-testing. Rapid molecular assays Thirty studies reported 33 evaluations of five different rapid molecular tests. Sensitivities varied according to test brand. Most of the data relate to the ID NOW and Xpert Xpress assays. Using data from evaluations following the manufacturer's instructions for use, the average sensitivity of ID NOW was 73.0% (95% CI 66.8% to 78.4%) and average specificity 99.7% (95% CI 98.7% to 99.9%; 4 evaluations; 812 samples, 222 cases). For Xpert Xpress, the average sensitivity was 100% (95% CI 88.1% to 100%) and average specificity 97.2% (95% CI 89.4% to 99.3%; 2 evaluations; 100 samples, 29 cases). Insufficient data were available to investigate the effect of symptom status or time after symptom onset. AUTHORS' CONCLUSIONS: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. The assays shown to meet appropriate criteria, such as WHO's priority target product profiles for COVID-19 diagnostics ('acceptable' sensitivity ≥ 80% and specificity ≥ 97%), can be considered as a replacement for laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. Positive predictive values suggest that confirmatory testing of those with positive results may be considered in low prevalence settings. Due to the variable sensitivity of antigen tests, people who test negative may still be infected. Evidence for testing in asymptomatic cohorts was limited. Test accuracy studies cannot adequately assess the ability of antigen tests to differentiate those who are infectious and require isolation from those who pose no risk, as there is no reference standard for infectiousness. A small number of molecular tests showed high accuracy and may be suitable alternatives to RT-PCR. However, further evaluations of the tests in settings as they are intended to be used are required to fully establish performance in practice. Several important studies in asymptomatic individuals have been reported since the close of our search and will be incorporated at the next update of this review. Comparative studies of antigen tests in their intended use settings and according to test operator (including self-testing) are required.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Point-of-Care Systems , SARS-CoV-2/immunology , Adult , Asymptomatic Infections , Bias , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing/standards , Child , Cohort Studies , False Negative Reactions , False Positive Reactions , Humans , Molecular Diagnostic Techniques/standards , Predictive Value of Tests , Reference Standards , Sensitivity and Specificity
12.
Neurourol Urodyn ; 39(2): 863-870, 2020 02.
Article in English | MEDLINE | ID: mdl-31845393

ABSTRACT

AIMS: Antenatal pelvic floor muscle training (PFMT) may be effective for the prevention and treatment of urinary and fecal incontinence both in pregnancy and postnatally, but it is not routinely implemented in practice despite guideline recommendations. This review synthesizes evidence that exposes challenges, opportunities, and concerns regarding the implementation of PFMT during the childbearing years, from the perspective of individuals, healthcare professionals (HCPs), and organizations. METHODS: Critical interpretive synthesis of systematically identified primary quantitative or qualitative studies or research syntheses of women's and HCPs attitudes, beliefs, or experiences of implementing PFMT. RESULTS: Fifty sources were included. These focused on experiences of postnatal urinary incontinence (UI) and perspectives of individual postnatal women, with limited evidence exploring the views of antenatal women and HCP or wider organizational and environmental issues. The concept of agency (people's ability to effect change through their interaction with other people, processes, and systems) provides an over-arching explanation of how PFMT can be implemented during childbearing years. This requires both individual and collective action of women, HCPs, maternity services and organizations, funders and policymakers. CONCLUSION: Numerous factors constrain women's and HCPs capacity to implement PFMT. It is unrealistic to expect women and HCPs to implement PFMT without reforming policy and service delivery. The implementation of PFMT during pregnancy, as recommended by antenatal care and UI management guidelines, requires policymakers, organizations, HCPs, and women to value the prevention of incontinence throughout women's lives by using low-risk, low-cost, and proven strategies as part of women's reproductive health.


Subject(s)
Pelvic Floor , Physical Therapy Modalities , Prenatal Care , Puerperal Disorders/prevention & control , Urinary Incontinence/prevention & control , Attitude of Health Personnel , Attitude to Health , Delivery of Health Care , Exercise Therapy , Fecal Incontinence/prevention & control , Fecal Incontinence/therapy , Female , Health Policy , Humans , Practice Guidelines as Topic , Pregnancy , Pregnancy Complications , Puerperal Disorders/therapy , Qualitative Research , United Kingdom , Urinary Incontinence/therapy
13.
Cochrane Database Syst Rev ; 8: CD013705, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32845525

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify or rule out current infection, identify people in need of care escalation, or to test for past infection and immune response. Point-of-care antigen and molecular tests to detect current SARS-CoV-2 infection have the potential to allow earlier detection and isolation of confirmed cases compared to laboratory-based diagnostic methods, with the aim of reducing household and community transmission. OBJECTIVES: To assess the diagnostic accuracy of point-of-care antigen and molecular-based tests to determine if a person presenting in the community or in primary or secondary care has current SARS-CoV-2 infection. SEARCH METHODS: On 25 May 2020 we undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. SELECTION CRITERIA: We included studies of people with suspected current SARS-CoV-2 infection, known to have, or not to have SARS-CoV-2 infection, or where tests were used to screen for infection. We included test accuracy studies of any design that evaluated antigen or molecular tests suitable for a point-of-care setting (minimal equipment, sample preparation, and biosafety requirements, with results available within two hours of sample collection). We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction (RT-PCR) tests and established clinical diagnostic criteria). DATA COLLECTION AND ANALYSIS: Two review authors independently screened studies and resolved any disagreements by discussion with a third review author. One review author independently extracted study characteristics, which were checked by a second review author. Two review authors independently extracted 2x2 contingency table data and assessed risk of bias and applicability of the studies using the QUADAS-2 tool. We present sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots. We pooled data using the bivariate hierarchical model separately for antigen and molecular-based tests, with simplifications when few studies were available. We tabulated available data by test manufacturer. MAIN RESULTS: We included 22 publications reporting on a total of 18 study cohorts with 3198 unique samples, of which 1775 had confirmed SARS-CoV-2 infection. Ten studies took place in North America, two in South America, four in Europe, one in China and one was conducted internationally. We identified data for eight commercial tests (four antigen and four molecular) and one in-house antigen test. Five of the studies included were only available as preprints. We did not find any studies at low risk of bias for all quality domains and had concerns about applicability of results across all studies. We judged patient selection to be at high risk of bias in 50% of the studies because of deliberate over-sampling of samples with confirmed COVID-19 infection and unclear in seven out of 18 studies because of poor reporting. Sixteen (89%) studies used only a single, negative RT-PCR to confirm the absence of COVID-19 infection, risking missing infection. There was a lack of information on blinding of index test (n = 11), and around participant exclusions from analyses (n = 10). We did not observe differences in methodological quality between antigen and molecular test evaluations. Antigen tests Sensitivity varied considerably across studies (from 0% to 94%): the average sensitivity was 56.2% (95% CI 29.5 to 79.8%) and average specificity was 99.5% (95% CI 98.1% to 99.9%; based on 8 evaluations in 5 studies on 943 samples). Data for individual antigen tests were limited with no more than two studies for any test. Rapid molecular assays Sensitivity showed less variation compared to antigen tests (from 68% to 100%), average sensitivity was 95.2% (95% CI 86.7% to 98.3%) and specificity 98.9% (95% CI 97.3% to 99.5%) based on 13 evaluations in 11 studies of on 2255 samples. Predicted values based on a hypothetical cohort of 1000 people with suspected COVID-19 infection (with a prevalence of 10%) result in 105 positive test results including 10 false positives (positive predictive value 90%), and 895 negative results including 5 false negatives (negative predictive value 99%). Individual tests We calculated pooled results of individual tests for ID NOW (Abbott Laboratories) (5 evaluations) and Xpert Xpress (Cepheid Inc) (6 evaluations). Summary sensitivity for the Xpert Xpress assay (99.4%, 95% CI 98.0% to 99.8%) was 22.6 (95% CI 18.8 to 26.3) percentage points higher than that of ID NOW (76.8%, (95% CI 72.9% to 80.3%), whilst the specificity of Xpert Xpress (96.8%, 95% CI 90.6% to 99.0%) was marginally lower than ID NOW (99.6%, 95% CI 98.4% to 99.9%; a difference of -2.8% (95% CI -6.4 to 0.8)) AUTHORS' CONCLUSIONS: This review identifies early-stage evaluations of point-of-care tests for detecting SARS-CoV-2 infection, largely based on remnant laboratory samples. The findings currently have limited applicability, as we are uncertain whether tests will perform in the same way in clinical practice, and according to symptoms of COVID-19, duration of symptoms, or in asymptomatic people. Rapid tests have the potential to be used to inform triage of RT-PCR use, allowing earlier detection of those testing positive, but the evidence currently is not strong enough to determine how useful they are in clinical practice. Prospective and comparative evaluations of rapid tests for COVID-19 infection in clinically relevant settings are urgently needed. Studies should recruit consecutive series of eligible participants, including both those presenting for testing due to symptoms and asymptomatic people who may have come into contact with confirmed cases. Studies should clearly describe symptomatic status and document time from symptom onset or time since exposure. Point-of-care tests must be conducted on samples according to manufacturer instructions for use and be conducted at the point of care. Any future research study report should conform to the Standards for Reporting of Diagnostic Accuracy (STARD) guideline.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Point-of-Care Systems , Antigens, Viral/analysis , COVID-19 , COVID-19 Testing , Coronavirus Infections/epidemiology , False Negative Reactions , False Positive Reactions , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Sensitivity and Specificity
14.
Cochrane Database Syst Rev ; 11: CD013787, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33211319

ABSTRACT

BACKGROUND: Specific diagnostic tests to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and resulting COVID-19 disease are not always available and take time to obtain results. Routine laboratory markers such as white blood cell count, measures of anticoagulation, C-reactive protein (CRP) and procalcitonin, are used to assess the clinical status of a patient. These laboratory tests may be useful for the triage of people with potential COVID-19 to prioritize them for different levels of treatment, especially in situations where time and resources are limited. OBJECTIVES: To assess the diagnostic accuracy of routine laboratory testing as a triage test to determine if a person has COVID-19. SEARCH METHODS: On 4 May 2020 we undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. SELECTION CRITERIA: We included both case-control designs and consecutive series of patients that assessed the diagnostic accuracy of routine laboratory testing as a triage test to determine if a person has COVID-19. The reference standard could be reverse transcriptase polymerase chain reaction (RT-PCR) alone; RT-PCR plus clinical expertise or and imaging; repeated RT-PCR several days apart or from different samples; WHO and other case definitions; and any other reference standard used by the study authors. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data from each included study. They also assessed the methodological quality of the studies, using QUADAS-2. We used the 'NLMIXED' procedure in SAS 9.4 for the hierarchical summary receiver operating characteristic (HSROC) meta-analyses of tests for which we included four or more studies. To facilitate interpretation of results, for each meta-analysis we estimated summary sensitivity at the points on the SROC curve that corresponded to the median and interquartile range boundaries of specificities in the included studies. MAIN RESULTS: We included 21 studies in this review, including 14,126 COVID-19 patients and 56,585 non-COVID-19 patients in total. Studies evaluated a total of 67 different laboratory tests. Although we were interested in the diagnotic accuracy of routine tests for COVID-19, the included studies used detection of SARS-CoV-2 infection through RT-PCR as reference standard. There was considerable heterogeneity between tests, threshold values and the settings in which they were applied. For some tests a positive result was defined as a decrease compared to normal vaues, for other tests a positive result was defined as an increase, and for some tests both increase and decrease may have indicated test positivity. None of the studies had either low risk of bias on all domains or low concerns for applicability for all domains. Only three of the tests evaluated had a summary sensitivity and specificity over 50%. These were: increase in interleukin-6, increase in C-reactive protein and lymphocyte count decrease. Blood count Eleven studies evaluated a decrease in white blood cell count, with a median specificity of 93% and a summary sensitivity of 25% (95% CI 8.0% to 27%; very low-certainty evidence). The 15 studies that evaluated an increase in white blood cell count had a lower median specificity and a lower corresponding sensitivity. Four studies evaluated a decrease in neutrophil count. Their median specificity was 93%, corresponding to a summary sensitivity of 10% (95% CI 1.0% to 56%; low-certainty evidence). The 11 studies that evaluated an increase in neutrophil count had a lower median specificity and a lower corresponding sensitivity. The summary sensitivity of an increase in neutrophil percentage (4 studies) was 59% (95% CI 1.0% to 100%) at median specificity (38%; very low-certainty evidence). The summary sensitivity of an increase in monocyte count (4 studies) was 13% (95% CI 6.0% to 26%) at median specificity (73%; very low-certainty evidence). The summary sensitivity of a decrease in lymphocyte count (13 studies) was 64% (95% CI 28% to 89%) at median specificity (53%; low-certainty evidence). Four studies that evaluated a decrease in lymphocyte percentage showed a lower median specificity and lower corresponding sensitivity. The summary sensitivity of a decrease in platelets (4 studies) was 19% (95% CI 10% to 32%) at median specificity (88%; low-certainty evidence). Liver function tests The summary sensitivity of an increase in alanine aminotransferase (9 studies) was 12% (95% CI 3% to 34%) at median specificity (92%; low-certainty evidence). The summary sensitivity of an increase in aspartate aminotransferase (7 studies) was 29% (95% CI 17% to 45%) at median specificity (81%) (low-certainty evidence). The summary sensitivity of a decrease in albumin (4 studies) was 21% (95% CI 3% to 67%) at median specificity (66%; low-certainty evidence). The summary sensitivity of an increase in total bilirubin (4 studies) was 12% (95% CI 3.0% to 34%) at median specificity (92%; very low-certainty evidence). Markers of inflammation The summary sensitivity of an increase in CRP (14 studies) was 66% (95% CI 55% to 75%) at median specificity (44%; very low-certainty evidence). The summary sensitivity of an increase in procalcitonin (6 studies) was 3% (95% CI 1% to 19%) at median specificity (86%; very low-certainty evidence). The summary sensitivity of an increase in IL-6 (four studies) was 73% (95% CI 36% to 93%) at median specificity (58%) (very low-certainty evidence). Other biomarkers The summary sensitivity of an increase in creatine kinase (5 studies) was 11% (95% CI 6% to 19%) at median specificity (94%) (low-certainty evidence). The summary sensitivity of an increase in serum creatinine (four studies) was 7% (95% CI 1% to 37%) at median specificity (91%; low-certainty evidence). The summary sensitivity of an increase in lactate dehydrogenase (4 studies) was 25% (95% CI 15% to 38%) at median specificity (72%; very low-certainty evidence). AUTHORS' CONCLUSIONS: Although these tests give an indication about the general health status of patients and some tests may be specific indicators for inflammatory processes, none of the tests we investigated are useful for accurately ruling in or ruling out COVID-19 on their own. Studies were done in specific hospitalized populations, and future studies should consider non-hospital settings to evaluate how these tests would perform in people with milder symptoms.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Diagnostic Tests, Routine/methods , SARS-CoV-2/isolation & purification , Bias , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/epidemiology , COVID-19 Testing/standards , Creatine Kinase/blood , Creatinine/blood , Diagnostic Tests, Routine/standards , Humans , Interleukin-6/blood , L-Lactate Dehydrogenase/blood , Leukocyte Count , Liver Function Tests , Lymphocyte Count , Pandemics , Platelet Count , ROC Curve , Reference Values , Reverse Transcriptase Polymerase Chain Reaction/standards , Sensitivity and Specificity , Triage
15.
Cochrane Database Syst Rev ; 7: CD013665, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32633856

ABSTRACT

BACKGROUND: Some people with SARS-CoV-2 infection remain asymptomatic, whilst in others the infection can cause mild to moderate COVID-19 disease and COVID-19 pneumonia, leading some patients to require intensive care support and, in some cases, to death, especially in older adults. Symptoms such as fever or cough, and signs such as oxygen saturation or lung auscultation findings, are the first and most readily available diagnostic information. Such information could be used to either rule out COVID-19 disease, or select patients for further diagnostic testing. OBJECTIVES: To assess the diagnostic accuracy of signs and symptoms to determine if a person presenting in primary care or to hospital outpatient settings, such as the emergency department or dedicated COVID-19 clinics, has COVID-19 disease or COVID-19 pneumonia. SEARCH METHODS: On 27 April 2020, we undertook electronic searches in the Cochrane COVID-19 Study Register and the University of Bern living search database, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. SELECTION CRITERIA: Studies were eligible if they included patients with suspected COVID-19 disease, or if they recruited known cases with COVID-19 disease and controls without COVID-19. Studies were eligible when they recruited patients presenting to primary care or hospital outpatient settings. Studies including patients who contracted SARS-CoV-2 infection while admitted to hospital were not eligible. The minimum eligible sample size of studies was 10 participants. All signs and symptoms were eligible for this review, including individual signs and symptoms or combinations. We accepted a range of reference standards including reverse transcription polymerase chain reaction (RT-PCR), clinical expertise, imaging, serology tests and World Health Organization (WHO) or other definitions of COVID-19. DATA COLLECTION AND ANALYSIS: Pairs of review authors independently selected all studies, at both title and abstract stage and full-text stage. They resolved any disagreements by discussion with a third review author. Two review authors independently extracted data and resolved disagreements by discussion with a third review author. Two review authors independently assessed risk of bias using the QUADAS-2 checklist. Analyses were descriptive, presenting sensitivity and specificity in paired forest plots, in ROC (receiver operating characteristic) space and in dumbbell plots. We did not attempt meta-analysis due to the small number of studies, heterogeneity across studies and the high risk of bias. MAIN RESULTS: We identified 16 studies including 7706 participants in total. Prevalence of COVID-19 disease varied from 5% to 38% with a median of 17%. There were no studies from primary care settings, although we did find seven studies in outpatient clinics (2172 participants), and four studies in the emergency department (1401 participants). We found data on 27 signs and symptoms, which fall into four different categories: systemic, respiratory, gastrointestinal and cardiovascular. No studies assessed combinations of different signs and symptoms and results were highly variable across studies. Most had very low sensitivity and high specificity; only six symptoms had a sensitivity of at least 50% in at least one study: cough, sore throat, fever, myalgia or arthralgia, fatigue, and headache. Of these, fever, myalgia or arthralgia, fatigue, and headache could be considered red flags (defined as having a positive likelihood ratio of at least 5) for COVID-19 as their specificity was above 90%, meaning that they substantially increase the likelihood of COVID-19 disease when present. Seven studies carried a high risk of bias for selection of participants because inclusion in the studies depended on the applicable testing and referral protocols, which included many of the signs and symptoms under study in this review. Five studies only included participants with pneumonia on imaging, suggesting that this is a highly selected population. In an additional four studies, we were unable to assess the risk for selection bias. These factors make it very difficult to determine the diagnostic properties of these signs and symptoms from the included studies. We also had concerns about the applicability of these results, since most studies included participants who were already admitted to hospital or presenting to hospital settings. This makes these findings less applicable to people presenting to primary care, who may have less severe illness and a lower prevalence of COVID-19 disease. None of the studies included any data on children, and only one focused specifically on older adults. We hope that future updates of this review will be able to provide more information about the diagnostic properties of signs and symptoms in different settings and age groups. AUTHORS' CONCLUSIONS: The individual signs and symptoms included in this review appear to have very poor diagnostic properties, although this should be interpreted in the context of selection bias and heterogeneity between studies. Based on currently available data, neither absence nor presence of signs or symptoms are accurate enough to rule in or rule out disease. Prospective studies in an unselected population presenting to primary care or hospital outpatient settings, examining combinations of signs and symptoms to evaluate the syndromic presentation of COVID-19 disease, are urgently needed. Results from such studies could inform subsequent management decisions such as self-isolation or selecting patients for further diagnostic testing. We also need data on potentially more specific symptoms such as loss of sense of smell. Studies in older adults are especially important.


Subject(s)
Ambulatory Care , Betacoronavirus , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Primary Health Care , Symptom Assessment , Arthralgia/diagnosis , Arthralgia/etiology , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Fatigue/diagnosis , Fatigue/etiology , Fever/diagnosis , Fever/etiology , Headache/diagnosis , Humans , Myalgia/diagnosis , Myalgia/etiology , Outpatient Clinics, Hospital/statistics & numerical data , Pandemics , Physical Examination , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Selection Bias , Symptom Assessment/classification , Symptom Assessment/statistics & numerical data
16.
Cochrane Database Syst Rev ; 6: CD013652, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32584464

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and resulting COVID-19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify current infection, rule out infection, identify people in need of care escalation, or to test for past infection and immune response. Serology tests to detect the presence of antibodies to SARS-CoV-2 aim to identify previous SARS-CoV-2 infection, and may help to confirm the presence of current infection. OBJECTIVES: To assess the diagnostic accuracy of antibody tests to determine if a person presenting in the community or in primary or secondary care has SARS-CoV-2 infection, or has previously had SARS-CoV-2 infection, and the accuracy of antibody tests for use in seroprevalence surveys. SEARCH METHODS: We undertook electronic searches in the Cochrane COVID-19 Study Register and the COVID-19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 27 April 2020. SELECTION CRITERIA: We included test accuracy studies of any design that evaluated antibody tests (including enzyme-linked immunosorbent assays, chemiluminescence immunoassays, and lateral flow assays) in people suspected of current or previous SARS-CoV-2 infection, or where tests were used to screen for infection. We also included studies of people either known to have, or not to have SARS-CoV-2 infection. We included all reference standards to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR) and clinical diagnostic criteria). DATA COLLECTION AND ANALYSIS: We assessed possible bias and applicability of the studies using the QUADAS-2 tool. We extracted 2x2 contingency table data and present sensitivity and specificity for each antibody (or combination of antibodies) using paired forest plots. We pooled data using random-effects logistic regression where appropriate, stratifying by time since post-symptom onset. We tabulated available data by test manufacturer. We have presented uncertainty in estimates of sensitivity and specificity using 95% confidence intervals (CIs). MAIN RESULTS: We included 57 publications reporting on a total of 54 study cohorts with 15,976 samples, of which 8526 were from cases of SARS-CoV-2 infection. Studies were conducted in Asia (n = 38), Europe (n = 15), and the USA and China (n = 1). We identified data from 25 commercial tests and numerous in-house assays, a small fraction of the 279 antibody assays listed by the Foundation for Innovative Diagnostics. More than half (n = 28) of the studies included were only available as preprints. We had concerns about risk of bias and applicability. Common issues were use of multi-group designs (n = 29), inclusion of only COVID-19 cases (n = 19), lack of blinding of the index test (n = 49) and reference standard (n = 29), differential verification (n = 22), and the lack of clarity about participant numbers, characteristics and study exclusions (n = 47). Most studies (n = 44) only included people hospitalised due to suspected or confirmed COVID-19 infection. There were no studies exclusively in asymptomatic participants. Two-thirds of the studies (n = 33) defined COVID-19 cases based on RT-PCR results alone, ignoring the potential for false-negative RT-PCR results. We observed evidence of selective publication of study findings through omission of the identity of tests (n = 5). We observed substantial heterogeneity in sensitivities of IgA, IgM and IgG antibodies, or combinations thereof, for results aggregated across different time periods post-symptom onset (range 0% to 100% for all target antibodies). We thus based the main results of the review on the 38 studies that stratified results by time since symptom onset. The numbers of individuals contributing data within each study each week are small and are usually not based on tracking the same groups of patients over time. Pooled results for IgG, IgM, IgA, total antibodies and IgG/IgM all showed low sensitivity during the first week since onset of symptoms (all less than 30.1%), rising in the second week and reaching their highest values in the third week. The combination of IgG/IgM had a sensitivity of 30.1% (95% CI 21.4 to 40.7) for 1 to 7 days, 72.2% (95% CI 63.5 to 79.5) for 8 to 14 days, 91.4% (95% CI 87.0 to 94.4) for 15 to 21 days. Estimates of accuracy beyond three weeks are based on smaller sample sizes and fewer studies. For 21 to 35 days, pooled sensitivities for IgG/IgM were 96.0% (95% CI 90.6 to 98.3). There are insufficient studies to estimate sensitivity of tests beyond 35 days post-symptom onset. Summary specificities (provided in 35 studies) exceeded 98% for all target antibodies with confidence intervals no more than 2 percentage points wide. False-positive results were more common where COVID-19 had been suspected and ruled out, but numbers were small and the difference was within the range expected by chance. Assuming a prevalence of 50%, a value considered possible in healthcare workers who have suffered respiratory symptoms, we would anticipate that 43 (28 to 65) would be missed and 7 (3 to 14) would be falsely positive in 1000 people undergoing IgG/IgM testing at days 15 to 21 post-symptom onset. At a prevalence of 20%, a likely value in surveys in high-risk settings, 17 (11 to 26) would be missed per 1000 people tested and 10 (5 to 22) would be falsely positive. At a lower prevalence of 5%, a likely value in national surveys, 4 (3 to 7) would be missed per 1000 tested, and 12 (6 to 27) would be falsely positive. Analyses showed small differences in sensitivity between assay type, but methodological concerns and sparse data prevent comparisons between test brands. AUTHORS' CONCLUSIONS: The sensitivity of antibody tests is too low in the first week since symptom onset to have a primary role for the diagnosis of COVID-19, but they may still have a role complementing other testing in individuals presenting later, when RT-PCR tests are negative, or are not done. Antibody tests are likely to have a useful role for detecting previous SARS-CoV-2 infection if used 15 or more days after the onset of symptoms. However, the duration of antibody rises is currently unknown, and we found very little data beyond 35 days post-symptom onset. We are therefore uncertain about the utility of these tests for seroprevalence surveys for public health management purposes. Concerns about high risk of bias and applicability make it likely that the accuracy of tests when used in clinical care will be lower than reported in the included studies. Sensitivity has mainly been evaluated in hospitalised patients, so it is unclear whether the tests are able to detect lower antibody levels likely seen with milder and asymptomatic COVID-19 disease. The design, execution and reporting of studies of the accuracy of COVID-19 tests requires considerable improvement. Studies must report data on sensitivity disaggregated by time since onset of symptoms. COVID-19-positive cases who are RT-PCR-negative should be included as well as those confirmed RT-PCR, in accordance with the World Health Organization (WHO) and China National Health Commission of the People's Republic of China (CDC) case definitions. We were only able to obtain data from a small proportion of available tests, and action is needed to ensure that all results of test evaluations are available in the public domain to prevent selective reporting. This is a fast-moving field and we plan ongoing updates of this living systematic review.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Antibody Specificity , COVID-19 , Coronavirus Infections/epidemiology , False Negative Reactions , False Positive Reactions , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Pandemics , Pneumonia, Viral/epidemiology , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , SARS-CoV-2 , Selection Bias , Sensitivity and Specificity , Serologic Tests/methods , Serologic Tests/standards
17.
Sex Transm Infect ; 95(1): 43-45, 2019 02.
Article in English | MEDLINE | ID: mdl-30072393

ABSTRACT

OBJECTIVES: This is a comparative review between using dried blood spot (DBS) and mini-tube (MT) HIV sampling kits as part of an online sexually transmitted infection (STI) postal testing service. England has recently seen increases in internet-based and postal (eHealth) STI services. Expanding accessibility and testing for patients, cost implications and narrowing the HIV undiagnosed margin are drivers for this. METHODS: In 2017, data were reviewed from an online postal STI kit requesting service at a time of transitioning from MT to DBS. We compared the STI postal kit and HIV blood sample return rates, and the successful processing/analysis rates of the DBS and MT kits. Descriptive statistics were applied to participant characteristics, with Pearson's χ2 or Fisher exact test used to demonstrate statistical differences. We also describe and calculate a 'request-to-result ratio' (RRR) for both kit types. The RRR is defined as the number of online kit requests required to produce one successfully analysed result. RESULTS: 550 STI postal kit requests from a North-West of England region were reviewed from 13 June 2017 to 22 September 2017 (275 MT, 275 DBS). Baseline characteristics between the two groups were comparable (63% woman, 90% white British and 86% heterosexual with a median age of 26 years). The successful processing rate for the DBS was 98.8% c.f. 55.7% for the MT (p<0.001). The RRR for MT was 2.96, c.f. 1.70 for DBS. There was a 5.4% false positive HIV rate in the MT c.f. none in the DBS. CONCLUSIONS: This comparative analysis suggests that in this community setting, the use of postal HIV DBS kits resulted in a significantly improved RRR compared with MT. The biggest factor was the large number of MT samples not analysed due to inadequate blood volumes. The unexpected level of false positive results in the MT samples needs confirming in larger studies.


Subject(s)
Dried Blood Spot Testing/methods , HIV Infections/diagnosis , Postal Service , Telemedicine/methods , Adult , Blood Chemical Analysis/methods , Blood Specimen Collection/methods , England , False Positive Reactions , Female , HIV Antibodies/analysis , HIV Antigens/analysis , HIV Infections/blood , Heterosexuality , Humans , Male , Mass Screening , Serologic Tests , Sexual and Gender Minorities , Young Adult
18.
Cochrane Database Syst Rev ; 5: CD012245, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31087568

ABSTRACT

BACKGROUND: Stillbirth affects 2.6 million pregnancies worldwide each year. Whilst the majority of cases occur in low- and middle-income countries, stillbirth remains an important clinical issue for high-income countries (HICs) - with both the UK and the USA reporting rates above the mean for HICs. In HICs, the most frequently reported association with stillbirth is placental dysfunction. Placental dysfunction may be evident clinically as fetal growth restriction (FGR) and small-for-dates infants. It can be caused by placental abruption or hypertensive disorders of pregnancy and many other disorders and factorsPlacental abnormalities are noted in 11% to 65% of stillbirths. Identification of FGA is difficult in utero. Small-for-gestational age (SGA), as assessed after birth, is the most commonly used surrogate measure for this outcome. The degree of SGA is associated with the likelihood of FGR; 30% of infants with a birthweight < 10th centile are thought to be FGR, while 70% of infants with a birthweight < 3rd centile are thought to be FGR. Critically, SGA is the most significant antenatal risk factor for a stillborn infant. Correct identification of SGA infants is associated with a reduction in the perinatal mortality rate. However, currently used tests, such as measurement of symphysis-fundal height, have a low reported sensitivity and specificity for the identification of SGA infants. OBJECTIVES: The primary objective was to assess and compare the diagnostic accuracy of ultrasound assessment of fetal growth by estimated fetal weight (EFW) and placental biomarkers alone and in any combination used after 24 weeks of pregnancy in the identification of placental dysfunction as evidenced by either stillbirth, or birth of a SGA infant. Secondary objectives were to investigate the effect of clinical and methodological factors on test performance. SEARCH METHODS: We developed full search strategies with no language or date restrictions. The following sources were searched: MEDLINE, MEDLINE In Process and Embase via Ovid, Cochrane (Wiley) CENTRAL, Science Citation Index (Web of Science), CINAHL (EBSCO) with search strategies adapted for each database as required; ISRCTN Registry, UK Clinical Trials Gateway, WHO International Clinical Trials Portal and ClinicalTrials.gov for ongoing studies; specialist abstract and conference proceeding resources (British Library's ZETOC and Web of Science Conference Proceedings Citation Index). Search last conducted in Ocober 2016. SELECTION CRITERIA: We included studies of pregnant women of any age with a gestation of at least 24 weeks if relevant outcomes of pregnancy (live birth/stillbirth; SGA infant) were assessed. Studies were included irrespective of whether pregnant women were deemed to be low or high risk for complications or were of mixed populations (low and high risk). Pregnancies complicated by fetal abnormalities and multi-fetal pregnancies were excluded as they have a higher risk of stillbirth from non-placental causes. With regard to biochemical tests, we included assays performed using any technique and at any threshold used to determine test positivity. DATA COLLECTION AND ANALYSIS: We extracted the numbers of true positive, false positive, false negative, and true negative test results from each study. We assessed risk of bias and applicability using the QUADAS-2 tool. Meta-analyses were performed using the hierarchical summary ROC model to estimate and compare test accuracy. MAIN RESULTS: We included 91 studies that evaluated seven tests - blood tests for human placental lactogen (hPL), oestriol, placental growth factor (PlGF) and uric acid, ultrasound EFW and placental grading and urinary oestriol - in a total of 175,426 pregnant women, in which 15,471 pregnancies ended in the birth of a small baby and 740 pregnancies which ended in stillbirth. The quality of included studies was variable with most domains at low risk of bias although 59% of studies were deemed to be of unclear risk of bias for the reference standard domain. Fifty-three per cent of studies were of high concern for applicability due to inclusion of only high- or low-risk women.Using all available data for SGA (86 studies; 159,490 pregnancies involving 15,471 SGA infants), there was evidence of a difference in accuracy (P < 0.0001) between the seven tests for detecting pregnancies that are SGA at birth. Ultrasound EFW was the most accurate test for detecting SGA at birth with a diagnostic odds ratio (DOR) of 21.3 (95% CI 13.1 to 34.6); hPL was the most accurate biochemical test with a DOR of 4.78 (95% CI 3.21 to 7.13). In a hypothetical cohort of 1000 pregnant women, at the median specificity of 0.88 and median prevalence of 19%, EFW, hPL, oestriol, urinary oestriol, uric acid, PlGF and placental grading will miss 50 (95% CI 32 to 68), 116 (97 to 133), 124 (108 to 137), 127 (95 to 152), 139 (118 to 154), 144 (118 to 161), and 144 (122 to 161) SGA infants, respectively. For the detection of pregnancies ending in stillbirth (21 studies; 100,687 pregnancies involving 740 stillbirths), in an indirect comparison of the four biochemical tests, PlGF was the most accurate test with a DOR of 49.2 (95% CI 12.7 to 191). In a hypothetical cohort of 1000 pregnant women, at the median specificity of 0.78 and median prevalence of 1.7%, PlGF, hPL, urinary oestriol and uric acid will miss 2 (95% CI 0 to 4), 4 (2 to 8), 6 (6 to 7) and 8 (3 to 13) stillbirths, respectively. No studies assessed the accuracy of ultrasound EFW for detection of pregnancy ending in stillbirth. AUTHORS' CONCLUSIONS: Biochemical markers of placental dysfunction used alone have insufficient accuracy to identify pregnancies ending in SGA or stillbirth. Studies combining U and placental biomarkers are needed to determine whether this approach improves diagnostic accuracy over the use of ultrasound estimation of fetal size or biochemical markers of placental dysfunction used alone. Many of the studies included in this review were carried out between 1974 and 2016. Studies of placental substances were mostly carried out before 1991 and after 2013; earlier studies may not reflect developments in test technology.


Subject(s)
Fetal Development/physiology , Infant, Small for Gestational Age , Placenta/diagnostic imaging , Pregnancy Outcome , Ultrasonography, Prenatal , Female , Fetal Growth Retardation , Humans , Infant, Newborn , Perinatal Mortality , Pregnancy , Stillbirth
19.
Cochrane Database Syst Rev ; 7: CD012806, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31260100

ABSTRACT

BACKGROUND: Melanoma is one of the most aggressive forms of skin cancer, with the potential to metastasise to other parts of the body via the lymphatic system and the bloodstream. Melanoma accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Various imaging tests can be used with the aim of detecting metastatic spread of disease following a primary diagnosis of melanoma (primary staging) or on clinical suspicion of disease recurrence (re-staging). Accurate staging is crucial to ensuring that patients are directed to the most appropriate and effective treatment at different points on the clinical pathway. Establishing the comparative accuracy of ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)-CT imaging for detection of nodal or distant metastases, or both, is critical to understanding if, how, and where on the pathway these tests might be used. OBJECTIVES: Primary objectivesWe estimated accuracy separately according to the point in the clinical pathway at which imaging tests were used. Our objectives were:• to determine the diagnostic accuracy of ultrasound or PET-CT for detection of nodal metastases before sentinel lymph node biopsy in adults with confirmed cutaneous invasive melanoma; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging in adults with cutaneous invasive melanoma:○ for detection of any metastasis in adults with a primary diagnosis of melanoma (i.e. primary staging at presentation); and○ for detection of any metastasis in adults undergoing staging of recurrence of melanoma (i.e. re-staging prompted by findings on routine follow-up).We undertook separate analyses according to whether accuracy data were reported per patient or per lesion.Secondary objectivesWe sought to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging (detection of any metastasis) in mixed or not clearly described populations of adults with cutaneous invasive melanoma.For study participants undergoing primary staging or re-staging (for possible recurrence), and for mixed or unclear populations, our objectives were:• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of nodal metastases;• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases according to metastatic site. SEARCH METHODS: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included studies of any design that evaluated ultrasound (with or without the use of fine needle aspiration cytology (FNAC)), CT, MRI, or PET-CT for staging of cutaneous melanoma in adults, compared with a reference standard of histological confirmation or imaging with clinical follow-up of at least three months' duration. We excluded studies reporting multiple applications of the same test in more than 10% of study participants. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)). We estimated accuracy using the bivariate hierarchical method to produce summary sensitivities and specificities with 95% confidence and prediction regions. We undertook analysis of studies allowing direct and indirect comparison between tests. We examined heterogeneity between studies by visually inspecting the forest plots of sensitivity and specificity and summary receiver operating characteristic (ROC) plots. Numbers of identified studies were insufficient to allow formal investigation of potential sources of heterogeneity. MAIN RESULTS: We included a total of 39 publications reporting on 5204 study participants; 34 studies reporting data per patient included 4980 study participants with 1265 cases of metastatic disease, and seven studies reporting data per lesion included 417 study participants with 1846 potentially metastatic lesions, 1061 of which were confirmed metastases. The risk of bias was low or unclear for all domains apart from participant flow. Concerns regarding applicability of the evidence were high or unclear for almost all domains. Participant selection from mixed or not clearly defined populations and poorly described application and interpretation of index tests were particularly problematic.The accuracy of imaging for detection of regional nodal metastases before sentinel lymph node biopsy (SLNB) was evaluated in 18 studies. In 11 studies (2614 participants; 542 cases), the summary sensitivity of ultrasound alone was 35.4% (95% confidence interval (CI) 17.0% to 59.4%) and specificity was 93.9% (95% CI 86.1% to 97.5%). Combining pre-SLNB ultrasound with FNAC revealed summary sensitivity of 18.0% (95% CI 3.58% to 56.5%) and specificity of 99.8% (95% CI 99.1% to 99.9%) (1164 participants; 259 cases). Four studies demonstrated lower sensitivity (10.2%, 95% CI 4.31% to 22.3%) and specificity (96.5%,95% CI 87.1% to 99.1%) for PET-CT before SLNB (170 participants, 49 cases). When these data are translated to a hypothetical cohort of 1000 people eligible for SLNB, 237 of whom have nodal metastases (median prevalence), the combination of ultrasound with FNAC potentially allows 43 people with nodal metastases to be triaged directly to adjuvant therapy rather than having SLNB first, at a cost of two people with false positive results (who are incorrectly managed). Those with a false negative ultrasound will be identified on subsequent SLNB.Limited test accuracy data were available for whole body imaging via PET-CT for primary staging or re-staging for disease recurrence, and none evaluated MRI. Twenty-four studies evaluated whole body imaging. Six of these studies explored primary staging following a confirmed diagnosis of melanoma (492 participants), three evaluated re-staging of disease following some clinical indication of recurrence (589 participants), and 15 included mixed or not clearly described population groups comprising participants at a number of different points on the clinical pathway and at varying stages of disease (1265 participants). Results for whole body imaging could not be translated to a hypothetical cohort of people due to paucity of data.Most of the studies (6/9) of primary disease or re-staging of disease considered PET-CT, two in comparison to CT alone, and three studies examined the use of ultrasound. No eligible evaluations of MRI in these groups were identified. All studies used histological reference standards combined with follow-up, and two included FNAC for some participants. Observed accuracy for detection of any metastases for PET-CT was higher for re-staging of disease (summary sensitivity from two studies: 92.6%, 95% CI 85.3% to 96.4%; specificity: 89.7%, 95% CI 78.8% to 95.3%; 153 participants; 95 cases) compared to primary staging (sensitivities from individual studies ranged from 30% to 47% and specificities from 73% to 88%), and was more sensitive than CT alone in both population groups, but participant numbers were very small.No conclusions can be drawn regarding routine imaging of the brain via MRI or CT. AUTHORS' CONCLUSIONS: Review authors found a disappointing lack of evidence on the accuracy of imaging in people with a diagnosis of melanoma at different points on the clinical pathway. Studies were small and often reported data according to the number of lesions rather than the number of study participants. Imaging with ultrasound combined with FNAC before SLNB may identify around one-fifth of those with nodal disease, but confidence intervals are wide and further work is needed to establish cost-effectiveness. Much of the evidence for whole body imaging for primary staging or re-staging of disease is focused on PET-CT, and comparative data with CT or MRI are lacking. Future studies should go beyond diagnostic accuracy and consider the effects of different imaging tests on disease management. The increasing availability of adjuvant therapies for people with melanoma at high risk of disease spread at presentation will have a considerable impact on imaging services, yet evidence for the relative diagnostic accuracy of available tests is limited.


Subject(s)
Melanoma/diagnostic imaging , Neoplasm Metastasis , Neoplasm Staging , Skin Neoplasms/diagnostic imaging , Adult , Diagnosis, Computer-Assisted/methods , Humans , Magnetic Resonance Imaging , Neoplasm Recurrence, Local/diagnostic imaging , Positron Emission Tomography Computed Tomography , Randomized Controlled Trials as Topic , Sensitivity and Specificity , Tomography, X-Ray Computed , Ultrasonography , Melanoma, Cutaneous Malignant
20.
Cochrane Database Syst Rev ; 12: CD013190, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30521681

ABSTRACT

BACKGROUND: Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Early detection and treatment is key to improving survival; however, anxiety around missing early cases needs to be balanced against appropriate levels of referral and excision of benign lesions. Used in conjunction with clinical or dermoscopic suspicion of malignancy, or both, reflectance confocal microscopy (RCM) may reduce unnecessary excisions without missing melanoma cases. OBJECTIVES: To determine the diagnostic accuracy of reflectance confocal microscopy for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in adults with any lesion suspicious for melanoma and lesions that are difficult to diagnose, and to compare its accuracy with that of dermoscopy. SEARCH METHODS: We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; and seven other databases. We studied reference lists and published systematic review articles. SELECTION CRITERIA: Studies of any design that evaluated RCM alone, or RCM in comparison to dermoscopy, in adults with lesions suspicious for melanoma or atypical intraepidermal melanocytic variants, compared with a reference standard of either histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated summary sensitivities and specificities per algorithm and threshold using the bivariate hierarchical model. To compare RCM with dermoscopy, we grouped studies by population (defined by difficulty of lesion diagnosis) and combined data using hierarchical summary receiver operating characteristic (SROC) methods. Analysis of studies allowing direct comparison between tests was undertaken. To facilitate interpretation of results, we computed values of specificity at the point on the SROC curve with 90% sensitivity as this value lies within the estimates for the majority of analyses. We investigated the impact of using a purposely developed RCM algorithm and in-person test interpretation. MAIN RESULTS: The search identified 18 publications reporting on 19 study cohorts with 2838 lesions (including 658 with melanoma), which provided 67 datasets for RCM and seven for dermoscopy. Studies were generally at high or unclear risk of bias across almost all domains and of high or unclear concern regarding applicability of the evidence. Selective participant recruitment, lack of blinding of the reference test to the RCM result, and differential verification were particularly problematic. Studies may not be representative of populations eligible for RCM, and test interpretation was often undertaken remotely from the patient and blinded to clinical information.Meta-analysis found RCM to be more accurate than dermoscopy in studies of participants with any lesion suspicious for melanoma and in participants with lesions that were more difficult to diagnose (equivocal lesion populations). Assuming a fixed sensitivity of 90% for both tests, specificities were 82% for RCM and 42% for dermoscopy for any lesion suspicious for melanoma (9 RCM datasets; 1452 lesions and 370 melanomas). For a hypothetical population of 1000 lesions at the median observed melanoma prevalence of 30%, this equated to a reduction in unnecessary excisions with RCM of 280 compared to dermoscopy, with 30 melanomas missed by both tests. For studies in equivocal lesions, specificities of 86% would be observed for RCM and 49% for dermoscopy (7 RCM datasets; 1177 lesions and 180 melanomas). At the median observed melanoma prevalence of 20%, this reduced unnecessary excisions by 296 with RCM compared with dermoscopy, with 20 melanomas missed by both tests. Across all populations, algorithms and thresholds assessed, the sensitivity and specificity of the Pellacani RCM score at a threshold of three or greater were estimated at 92% (95% confidence interval (CI) 87 to 95) for RCM and 72% (95% CI 62 to 81) for dermoscopy. AUTHORS' CONCLUSIONS: RCM may have a potential role in clinical practice, particularly for the assessment of lesions that are difficult to diagnose using visual inspection and dermoscopy alone, where the evidence suggests that RCM may be both more sensitive and specific in comparison to dermoscopy. Given the paucity of data to allow comparison with dermoscopy, the results presented require further confirmation in prospective studies comparing RCM with dermoscopy in a real-world setting in a representative population.


Subject(s)
Dermoscopy , Melanoma/diagnostic imaging , Microscopy, Confocal/methods , Skin Neoplasms/diagnostic imaging , Adult , Biopsy , Humans , Melanoma/pathology , Sensitivity and Specificity , Skin/pathology , Skin Neoplasms/pathology , Melanoma, Cutaneous Malignant
SELECTION OF CITATIONS
SEARCH DETAIL