Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
PLoS Genet ; 10(7): e1004448, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25010199

ABSTRACT

The segregation of bacterial chromosomes follows a precise choreography of spatial organisation. It is initiated by the bipolar migration of the sister copies of the replication origin (ori). Most bacterial chromosomes contain a partition system (Par) with parS sites in close proximity to ori that contribute to the active mobilisation of the ori region towards the old pole. This is thought to result in a longitudinal chromosomal arrangement within the cell. In this study, we followed the duplication frequency and the cellular position of 19 Vibrio cholerae genome loci as a function of cell length. The genome of V. cholerae is divided between two chromosomes, chromosome I and II, which both contain a Par system. The ori region of chromosome I (oriI) is tethered to the old pole, whereas the ori region of chromosome II is found at midcell. Nevertheless, we found that both chromosomes adopted a longitudinal organisation. Chromosome I extended over the entire cell while chromosome II extended over the younger cell half. We further demonstrate that displacing parS sites away from the oriI region rotates the bulk of chromosome I. The only exception was the region where replication terminates, which still localised to the septum. However, the longitudinal arrangement of chromosome I persisted in Par mutants and, as was reported earlier, the ori region still localised towards the old pole. Finally, we show that the Par-independent longitudinal organisation and oriI polarity were perturbed by the introduction of a second origin. Taken together, these results suggest that the Par system is the major contributor to the longitudinal organisation of chromosome I but that the replication program also influences the arrangement of bacterial chromosomes.


Subject(s)
Chromosomes, Bacterial , DNA Replication/genetics , Origin Recognition Complex/genetics , Vibrio cholerae/genetics , Chromosome Segregation/genetics
2.
PLoS Genet ; 10(9): e1004557, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25255436

ABSTRACT

The replication terminus region (Ter) of the unique chromosome of most bacteria locates at mid-cell at the time of cell division. In several species, this localization participates in the necessary coordination between chromosome segregation and cell division, notably for the selection of the division site, the licensing of the division machinery assembly and the correct alignment of chromosome dimer resolution sites. The genome of Vibrio cholerae, the agent of the deadly human disease cholera, is divided into two chromosomes, chrI and chrII. Previous fluorescent microscopy observations suggested that although the Ter regions of chrI and chrII replicate at the same time, chrII sister termini separated before cell division whereas chrI sister termini were maintained together at mid-cell, which raised questions on the management of the two chromosomes during cell division. Here, we simultaneously visualized the location of the dimer resolution locus of each of the two chromosomes. Our results confirm the late and early separation of chrI and chrII Ter sisters, respectively. They further suggest that the MatP/matS macrodomain organization system specifically delays chrI Ter sister separation. However, TerI loci remain in the vicinity of the cell centre in the absence of MatP and a genetic assay specifically designed to monitor the relative frequency of sister chromatid contacts during constriction suggest that they keep colliding together until the very end of cell division. In contrast, we found that even though it is not able to impede the separation of chrII Ter sisters before septation, the MatP/matS macrodomain organization system restricts their movement within the cell and permits their frequent interaction during septum constriction.


Subject(s)
Cell Division , Chromosomes, Bacterial , DNA Replication , Vibrio cholerae/physiology , Bacterial Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Recombination, Genetic , Sister Chromatid Exchange , Time-Lapse Imaging
SELECTION OF CITATIONS
SEARCH DETAIL